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1. Introduction 

This paper gives a high level description of the philosophy and structure of the Rational 
Software Development Process. It  is: 

• iterative and incremental 
• object-oriented 
• managed and controlled 

It is generic enough to be tailorable to a wide variety of software products and projects, 
both in size and application domain. 

2. The Overall Software Life-Cycle 

2.1 Two Perspectives 

The Rational process may be approached from 2 different and integrated perspectives: 
• A management perspective, dealing with the financial, strategic, commercial, and 

human aspects. 
• A technical perspective, dealing with quality, engineering and design method aspects. 

2.2 Cycles and Phases 

Inception Elaboration Construction Transition Evolution

Management Perspective

time  
As seen from a management perspective, i.e., the business and economics point of view, 
the software life-cycle is organized along four main phases, indicators of the progress of 
the project: 
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• Inception—The good idea: specifying the end-product vision and its business case, 
defining the scope of the project.1 

 
• Elaboration—Planning the necessary activities and required resources; specifying the 

features and designing the architecture.2 
 
• Construction—Building the product, and evolving the vision, the architecture and the 

plans until the product—the completed vision—is ready for transfer to its users 
community. 

 
• Transition—Transitioning the product to its user’s community, which includes 

manufacturing, delivering, training, supporting, maintaining the product until the users 
are satisfied. 

 
Going through the 4 phases is called a development cycle, and it produces a software 
generation. Unless the life of the product stops, an existing product will evolve into its 
next generation by repeating the same sequence of inception, elaboration, construction and 
transition phases, with a different emphasis however on the various phases. We call this 
period evolution. As the product eventually goes through several cycles, new generations 
are being produced. 
For example, evolution cycles may be triggered by user suggested enhancements, changes 
in the users’ context, changes in the underlying technology, reaction to the competition, 
etc. 

Inception Elaboration Construction Transition Evolution

Inception Elaboration Construction Transition Evolution

The Next Evolution Cycle

An Initial Development Cycle Generation 1

Generation 2  
 
In practice, cycles may slightly overlap: the inception and elaboration phase may start 
during the trailing part of the transition phase of the previous cycle. 

2.3. Iterations 

From a technical perspective the software development is seen as a succession of 
iterations, through which the software under development evolves incrementally. Each 
iteration is concluded by the release of an executable product which may be a subset of 

                                                
1  The American Heritage Dictionary defines inception as “the beginning of something, such as 
an undertaking, a commencement.” 
2 The American Heritage Dictionary defines elaboration as the process “to develop thoroughly, to 
express at greater length or greater detail.” 
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the complete vision, but useful from some engineering or user perspective. Each release is 
accompanied by supporting artifacts: release description, user’s documentation, plans, etc. 
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An iteration consists of the activities of planning, analysis, design, implementation, testing, 
in various proportions depending on where the iteration is located in the development 
cycle. 
 
The management perspective and the technical perspective are reconciled, and in 
particular the end of the phases are synchronized with the end of iterations. In other 
words, each phase is broken down into one or more iterations. 
 

Inception Elaboration Construction Transition Evolution
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 (Note: The number of iterations per phase shown on this diagram is merely for illustration purposes.) 
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However the two perspectives—management and technical—do more than just 
synchronize on a few well identified milestones, they both contribute to a common set of 
products and artifacts that evolve over time. Some artifacts are more under the control of 
the technical side, some more under control of the management side. Cf. section5. 
 
The availability of these artifacts, and the satisfaction of the established evaluation criteria 
for the product and the artifacts are the tangible elements that constitute the milestones, 
much more than mere dates on a calendar. 
 
Like cycles, iterations may slightly overlap, e.g., the planning or architecture activities of 
iteration N may be started towards the end of iteration N–1. In some cases, some 
iterations may proceed in parallel: a team, working on one part of the system, may have no 
deliverable for a given iteration. 
 

2.4. Discriminants 

The emphasis and importance of the various phases, the entry and exit criteria, the 
artifacts involved along a development cycle, the number and length of the iterations may 
all vary depending on four major project characteristics that are process discriminants. In 
order of decreasing impact, the most important process dicriminants are: 
 
• The business context:  

-contract work, where the developer produce the software on a given customer 
specification and for this customer only,  

-speculative or commercial development, where the developer produce software to 
be put on the market, 

-or internal project, where customer and developer are in the same organization. 
 
• The size of the software development effort: 

as defined by some metrics, such as Delivered Source Instructions, or in functions 
points, etc., or number of person-months, or merely in cost. 

 
• The degree of novelty: 

how “precendented” this software effort is, relative to the development organization, 
and in particular whether the development is in a second or subsequent cycle. This 
discriminant includes the maturity of the organization and the process, its assets, its 
current skill set, and issues such as assembling and training a team, acquiring tools and 
other resources. 

 
• The type of application, the target domain:  

MIS, command and control, embedded real-time, software development environment 
tools, etc., especially with respect to the specific constraints the domain may impose 
on the development: safety, performance, internationalization, memory constraint, etc. 

 
This paper first describes the generic process, i.e., the part of the process that applies to 
all kinds of software developments, across a broad and general range of these 
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discriminants. It then describes some specific instances of the process for some values of 
the discriminants, as examples 
 

2.5 Effort and Schedule 

All phases are not identical in terms of schedule and effort. Although this will vary 
considerably depending on the project discriminants, a typical initial development cycle for 
a medium size project should anticipate the following ratios: 
 
 Inception Elaboration Construction Transition 
Effort   5 % 20 % 65 % 10% 
Schedule 10 % 30 % 50 % 10% 
 
which can be depicted graphically as: 
 

Inception Elaboration Construction Transition  
But for an evolution cycle, the inception and elaboration phases can be considerably 
reduced. Also, using certain tools and techniques, such as applications builders, the 
construction phase can be much smaller than the inception and elaboration phase together. 

3. The Phases of the Rational Process 

3.1. Inception phase 

This phase brings to light an original vision of a potential product, and transforms it into 
an actual project. Its purpose is to establish the business case for a new product or a major 
update, and to specify the project scope. 
 
For the development of a new product, the main outcome of this phase is a “go-no go” 
decision to move into the next phase and to invest time and money to analyze in detail 
what it to be built, can it be built, and how to build it. 
For the evolution of an existing product, this may be a simple and short phase, based on 
users’ or customers’ requests, on problem reports, on new technological advances. 
For a contractual development, the decision to proceed is based on experience of the 
specific domain and on the competitiveness of the development organization in this 
domain or market. In this case the inception phase may be concluded by a decision to bid, 
or by the bid itself. The idea may be based on an existing research prototype, whose 
architecture may or may not be suitable for the final software. 
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Entry criteria: 
The expression of a need, which can take any of the following forms: 
• an original vision 
• a legacy system 
• an RFP (request for proposal) 
• the previous generation and a list of enhancements 
• some assets (software, know-how, financial assets) 
• a conceptual prototype, or a mock-up 
 
Exit criteria: 
• an initial business case containing at least: 

• a clear formulation of the product vision—the core requirements— in terms of 
functionality, scope, performance, capacity, technology base 

• success criteria (for instance revenue projection) 
• an initial risk assessment 
• an estimate of the resources required to complete the elaboration phase. 

Optionally at the end of the inception phase, we may have: 
• an initial domain analysis model (~10%-20% complete), identifying the top key use 

cases, and sufficient to drive the architecture effort. 
• an initial architectural prototype, which at this stage may be a throw-away prototype. 
 

3.2. Elaboration Phase 

The purpose of this phase is to more thoroughly analyze the problem domain, to define 
and stabilize the architecture and to address the highest risk elements of the project. So 
that at the end of the phase we can produce a comprehensive plan showing how the 2 next 
phases will be done: 
• A baseline product vision (i.e., an initial set of requirements) based on an analysis 

model 
• Evaluation criteria for at least the first construction iteration 
• A baseline software architecture 
• The resources necessary to develop and deploy the product, especially in terms of 

people and tools 
• A schedule 
• A resolution of the risks sufficient to make a “high fidelity” cost, schedule and quality 

estimate of the construction phase. 
 
In  this phase an executable architectural prototype is built, in one or several iterations 
depending on the scope, size, risk, novelty of the project, which addresses at least the top 
key use cases identified in the inception phase, and which addresses the top technical risks 
of the project. 
This is an evolutionary prototype, of production quality code which becomes the 
architectural baseline, but it does not exclude the development of one or more 
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exploratory, throw-away prototypes to mitigate specific risks: refinements of the 
requirements, feasibility, human-interface studies, demonstrations to investors, etc. 
 
At the end of this phase, there is again a “go-no go” decision point to actually invest and 
build the product (or bid for the complete development of the contract). The plans 
produced must be detailed enough, and the risks sufficiently mitigated to be able to 
determine with accuracy the cost and schedule for the completion of the development. 
 
Entry criteria: 
• The products and artifacts described in the exit criteria of the previous phase. 
• The plan was approved by the project management, and funding authority, and the 

resources required for the elaboration phase have been allocated. 
 
Exit criteria: 
• a detailed software development plan, containing: 

• an updated risk assessment 
• a management plan 
• a staffing  plan 
• a phase plan showing the number and contents of the iteration 
• an iteration plan, detailing the next iteration 
• the development environment and other tools required 
• a test plan 

• a baseline vision, in the form of a set of evaluation criteria for the final product 
• objective, measurable evaluation criteria for assessing the results of the initial 

iterations(s) of the construction phase 
• a domain analysis model (80% complete), sufficient to be able to call the 

corresponding architecture ‘complete’. 
• a software architecture description (stating constraints and limitations) 
• an executable architecture baseline. 
 

3.3. Construction Phase 

This phase is broken down into several iterations, fleshing out the architecture baseline 
and evolving it in steps or increments towards the final product. At each iteration, the 
various artifacts prepared during the elaboration phase (see above) are expanded and 
revised, but they ultimately stabilize as the system evolves in correctness and 
completeness. 
 
New artifacts are produced during this phase beside the software itself: documentation, 
both internal and for the end-users, test beds and test suites, and deployment collaterals to 
support the next phase: marketing collaterals for example. 
 
For each iteration we have: 
 
Entry criteria: 
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• The product and artifacts of the previous iteration. The iteration plan must state the 
iteration specific goals: 

• additional capabilities being developed: which use cases or scenarios will be 
covered 

• risks being mitigated during this iteration 
• defects being fixed during the iteration. 

 
Exit criteria: 
The same products and artifacts, updated, plus: 
• A release description document, which captures the results of an iteration 
• Test cases and results of the tests conducted on the products, 
• An iteration plan, detailing the next iteration 
• Objective measurable evaluation criteria for assessing the results of the next 

iteration(s). 
 
Towards the end of the construction phase the following artifacts must be produced, and 
are additional exit criteria for the last iteration of the phase: 
• a deployment plan, specifying as necessary: 

• packaging  
• pricing 
• roll out 
• support 
• training 
• transition strategy (e.g., an upgrade plan from an existing system) 
• production (e.g., making floppies and manuals) 

• user documentation 
 

3.4. Transition Phase 

The transition phase is the phase where the product is put in the hands of its end users. It 
involves issues of marketing, packaging, installing, configuring, supporting the user-
community, making corrections, etc. 
 
From a technical perspective the iterations continue with one or more releases (or 
deliveries): ‘beta’ releases, general availability releases, bug fix or enhancement releases. 
 
The phase is completed when the user community is satisfied with the product: formal 
acceptance for example in a contractual setting, or when all activities on this product are 
terminated. It is the point where some of the accumulated assets can be made reusable by 
the next cycle or by some other projects. 
 
Entry criteria: 
• The product and artifacts of the previous iteration, and in particular a software 

product sufficiently mature to be put into the hands of its users. 
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Exit criteria: 
• An update of some of the previous documents, as necessary, the plan being replaced 

by a “post-mortem” analysis of the performance of the project relative to its original 
and revised success criteria;  

• a brief inventory of the organization’s new assets as a result this cycle. 
 

3.5. Evolution Cycles 

For substantial evolutions, we apply the whole process recursively, starting again at the 
inception phase, for a new cycle. Since we already have a product, this inception phase 
may be considerably reduced, compared to an initial development cycle. The elaboration 
phase also may be limited, and focused more on the planning aspects than evolving the 
analysis or the architecture. Said otherwise: cycles can slightly overlap. 
 
Minor evolutions are done in extending the transition phase, adding one or more 
iterations. 
 
Alternatively, the transition phase may be concluded by an end-of-life process, i.e., the 
product does not evolve any more, but some specific actions must be taken in order to 
terminate it, or retire it. 
 

4. Activities in the Rational Process 

The names of the phases of the Rational process stay away from the terms describing an 
intellectual activity: analysis, design, test, etc., so that it will be understood that this 
activity is not confined to that phase, and also to remain independent of terms employed 
by other authors, standards, and domain-specific jargon. These activities do take place, but 
in varying degree in each phase and iteration. The following figure illustrates how the 
emphasis and effort evolves over time. 
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This change of focus explains also that, although all structured in the same way, the exact 
nature and contents of the iterations evolves over time. 
 
This also shows that the beginning of an activity is not bound to the end of another, e.g., 
design does not start when analysis completes, but the various artifacts associated with the 
activities are revised as the problem or the requirements are better understood. 
 
Finally, in an iterative process, the activities of planning, test and integration are spread 
incrementally throughout the cycle, in each iteration, and not massively lumped at the 
beginning and at the end, respectively. They do not appear as separate steps or phases in 
the process. 
 
Although this will vary considerably depending on the project discriminants, a typical 
initial development cycle for a medium size project should anticipate the following ratios 
for various activities: 
 

Planning and management 15% 
analysis/requirements 10% 
design/integration 15% 
implementation/functional tests 30% 
measurement/assessment/acceptance test 15% 
tools/environment/change management 10% 
maintenance (fixes during development) 5% 
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5. Life-cycle Artifacts 

The process is not document-driven: its main artifact must remain at all time the software 
product itself. The documentation should remain lean and limited to the few documents 
that bring real value to the project from a management or technical point of view. Rational 
suggests the following typical set of documents. 
 

5.1 Management artifacts 

The management artifacts are not the product, but are used to drive or monitor the 
progress of the project, estimate the risks, adjust the resources, give visibility to the 
customer (in a contractual setting) or the investors. 
• An Organizational Policy document, which is the codification of the organization’s 

process; it contains an instance of this generic process. 
• A Vision document, which describes the system level requirements, qualities and 

priorities. 
• A Business Case document, describing the financial context, contract, projected return 

on investment, etc. 
• A Development Plan document, which contains in particular the overall iteration plan, 

and plan for the current and upcoming iteration. 
• An Evaluation Criteria document, containing the requirements, acceptance criteria 

and other specific technical objectives, which evolves from major milestone to major 
milestone. It contains the iteration goals and acceptance levels. 

• Release Description documents for each release,  
• Deployment document, gathering additional information useful for transition, training, 

installation, sales, manufacturing, cut-over. 
• Status Assessment documents: periodic snapshots of project status, with metrics of 

progress, staffing, expenditure, results, critical risks, actions items, post-mortem. 
 

5.2 Technical artifacts 

These artifacts are either the delivered goods: executable software and manuals, or the 
blueprints that were used to manufacture the delivered goods: software models, source 
code, and other engineering information useful to understand and evolve the product. The 
• User’s Manual, developed early in the life-cycle. 
• Software documentation, preferably in the form of self-documenting source code, and 

models (uses cases, class diagrams, process diagrams, etc.) captured and maintained 
with appropriate CASE tools. 

• A Software Architecture document, extracted (abstracted) from the software 
documentation, describing the overall structure of the software, its decomposition in 
major elements: class categories, classes, processes, subsystems, the definition of 
critical interfaces, and rationale for the key design decisions. 

 
The artifacts enumerated in the entry and exit criteria in §3 can all be mapped onto one of 
these 11 documents. 
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Depending on the type of project, this typical document set can be extended or contracted, 
some documents can be merged. The documents do not have to be paper documents—
they can be spreadsheet, text-files, database, annotations in source code, hypertext 
documents, etc.—but the corresponding information source must be clearly identified, 
easily accessible and some of its history preserved. 
 

5.3 Requirements 

The Rational process is not requirement-driven either. The requirements for the product 
evolve during a cycle, and take different forms: 
• The business case gives the main constraints, mostly in terms of resources that can be 

expended. 
• The vision document describes only the key requirements of the system from a user’s 

perspective, and it evolves only slowly during the development cycle. 
• The more detailed requirements are elaborated during the elaboration phase, in the 

form of use cases and scenarios, and are refined incrementally throughout the 
construction phase, as the product and the users needs become better understood. 
These more detailed requirements are in the evaluation criteria  document; they drive 
the definition of the contents of the construction and transition iterations, and are 
referenced in the iteration plan. 

 

6. Examples of Rational Processes 

The Rational process takes different aspects depending on the discriminants described in 
section 2.4. Heere are two extreme examples. 
 

6.1 Rational Process for Large Contractual Software Development 

Rational proposes to set up the procurement of large software in 3 stages, associated with 
3 different kinds of contract. 

• An R&D stage, comprising the inception and elaboration phase, typically bid in a risk 
sharing manner, e.g., as a cost plus award fee contract (CPAF). 

• A production stage, comprising the construction and transition phases, typically bid 
as a firm, fixed price contract (FFP) 

• A maintenance stage if any, corresponding to the evolution phase, typically bid as a 
level of effort contract (LOE). 

 
Due to the higher level of visibility that is required from the customer on the evolution of 
the project, and because of the larger number of people and organizations involves, more 
formalism is required in the process and there may be more emphasis on written artifacts, 
than would be the case in a small, internal project. All 11 documents listed in §5 are 
present in some form or name. 
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6.2 Rational Process for a small commercial software product 

At the other extremity of the scale of the family of processes, a small commercial 
development would see a more fluid process, with only limited amount of formalism at the 
major milestones and a more limited set of documents: 
• a product vision 
• a development plan, showing schedule and resources 
• release description documents, specifying the goal of an iteration at the beginning of 

the iteration, and updated to serve as release notes at the end. 
• user documentation, as necessary 
Software architecture, software design, development process and procedures can be 
documented by the code itself or the software development environment. 

7. Conclusion 

The Rational process puts an emphasis on addressing very early high risks areas, by 
developing rapidly an initial version of the system, which defines its architecture. It does 
not assume a fixed set of firm requirements at the inception of the project, but allows to 
refine the requirements as the project evolves. It expect and accommodate changes. The 
process does not put either a strong focus on documents or ‘ceremonies’, and it lends 
itself to the automation of many of the tedious tasks associated with software 
development. The main focus remains the software product itself, and its quality, as 
measured by the degree to which it satisfies its end-users, and meets its return on 
investment objective altogether. 
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A process derived from the generic process described here would fully conform to the 
requirements of a standard such as ISO 9000. 
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Glossary 

Artifact Any document or software other than the software product itself.  
Baseline A release that is subject to change management and configuration 

control 
Construction The 3rd phase of the process, where the software is brought from an 

executable architectural baseline to the point where it is ready to be 
transitioned to its user’s community. 

Cycle One complete pass through the 4 phases: inception-elaboration-
construction-transition. The span of time between the beginning of the 
inception phase and the end of the transition phase. 

Elaboration The 2nd phase of the process where the product vision and its 
architecture are defined. 

Evolution The life of the software after its initial development cycle; any 
subsequent cycle, where the product evolve. 

Generation The result of one software development cycle. 
Inception The first phase of the process, where the seed—idea, RFP, previous 

generation—is brought up to the point of being (at least internally) 
founded to enter into the elaboration phase. 

Iteration A distinct sequence of activities with a baselined plan and an evaluation 
criteria. 

Milestone An event held to formally initiate and conclude an iteration 
Phase The span of time between 2 major milestones of the process where a 

well defined set of objectives are met, artifacts are completed, and 
decisions are made to move or not into the next phase. 
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Product The software that is the result of the development, and some of the 
associated artifacts (documentation, release medium, training). 

Prototype A release which is not necessarily subjected to change management and 
configuration control 

Release A subset of the end-product which is the object of evaluation at a major 
milestone (see: prototype, baseline). 

Risk An ongoing or upcoming concern which has a significant probability of 
adversely affecting the success of major milestones 

Transition The 4th phase of the process where the software is turned into the hands 
the hands of the user’s community. 

Vision The user’s view of the product to be developed 
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