
©2000 ThoughtWorks, Inc. All rights reserved

1

Planning Agile
Projects

Martin Fowler
Chief Scientist, ThoughtWorks

fowler@acm.org
www.martinfowler.com

2

Agile Projects

» A project that expects that things will
change as the project progresses
– Requirements Changes
– Design changes
– Technology changes
– People changes

Such projects require careful planning, but a
different kind of planning

©2000 ThoughtWorks, Inc. All rights reserved

3

Agile Methodologies

» New breed of methodologies that have
discipline without bureaucracy

» E.g.:
– XP (Extreme Programming)
– Crystal / Highsmith ASD
– Feature Driven Development
– SCRUM
– DSDM

4

Agile Manifesto

Individuals and
Interactions

over Process and
Tools

Working
Software

over Comprehensive
Documents

Customer
Collaboration

over Contract
Negotiation

Responding to
Change

over Following a
Plan

We Value:

www.agileAlliance.org

©2000 ThoughtWorks, Inc. All rights reserved

5

Agile Planning

» Planning with the expectation
of change

» Ideas based on those in
Planning XP
– Concepts are effective in any

agile environment
– Add in key ideas from other

agile processes
» Beck and Fowler, Planning

Extreme Programming,
Addison-Wesley, 2001

6

Agile and Predictive

Agile
» Only rough plans

beyond a few months
– Low precision

» Long term plans are
expected to change
– Things don’t go

according to plan
» Detailed plans in short

horizons

– Two weeks to two
months

Predicitve
» Figure out everything

that needs to be done
before beginning

» Figure out best way of
doing it

» Long planning horizon
of a year or more

» Deviations from plan
are problems

©2000 ThoughtWorks, Inc. All rights reserved

7

Do you need Agile?

» What would it take to requirements
stable?
– Do people understand what’s needed now?
– Do you understand costs?
– Is the business changing?

» Would it be good to have stable
requirements?
– Is a late change in requirements a

competitive advantage?

8

Why Plan?

©2000 ThoughtWorks, Inc. All rights reserved

9

Why Plan?

» To understand how to plan, we need to
understand we do it
– Benefits of planning
– Myths of planning
– How Adaptivity changes planning

10

Driving to Acadia

» It’s 2pm in Boston and we are driving to
Acadia
– Last time the drive was five hours
– We want to visit Freeport for camping gear
– We don’t want to arrive too late
– We’d like to get haircuts
– We need to eat

» We can arrive at nine, fed, equipped but
unshorn

Planning helps us understand our options so
spend time on the most important things

©2000 ThoughtWorks, Inc. All rights reserved

11

Coordinating with Others

» Our spice want dinner at 8 in Bar Harbor
» We alter our plans to fit

– We don’t need dinner on the way
– We can still spend an hour in Freeport

Plans allow us to coordinate our activities
with others

12

Dealing with Trouble

» Hitting bad traffic
– We get to Portland at 5
– It usually takes an hour and a half
– We are an hour and a half late

» Change the plan
– Forget Freeport
– Put back dinner to 8.30

Having a plan makes it easier to cope with
unexpected events

©2000 ThoughtWorks, Inc. All rights reserved

13

Planning needs tracking

» You need to know where you are
– Where are we? (Portland)
– What time is it? (5pm)
– How long did it take us last time (hour and

a half)

Must have clear picture of visibility.
This is hard for software

14

Waterfall and Iterative

Analysis Design Coding Testing

D

A C

T

D

A C

T

D

A C

T

©2000 ThoughtWorks, Inc. All rights reserved

15

Agile != Iterative

» You can do iterative development in a
predictive manner
– Do early work on requirements analysis
– Lay out detailed plans of building by

iterations
– Manage that plan

» Agile development assumes requirements
will change
– So don’t do detailed requirements in

advance

16

The Planning Trap

» A plan is not a prediction of the future
– Unexpected things will happen

» Don’t use plans to measure virtue
– People want to say things are going well
– Will hide early signs of trouble
– Plan turns into an illusion

“Things are going according to plan –
congratulations”

©2000 ThoughtWorks, Inc. All rights reserved

17

Plans Change

» Planning does not prevent unexpected
events
– Planning allows you to understand the

consequences
» But the plan itself must change

– Deviations from plan are not errors
– Expect regular changes and inform

everyone as changes happen

18

Planning Principles

©2000 ThoughtWorks, Inc. All rights reserved

19

Two Level Planning

» Long Horizon

– Few months to a few
years

– Low precision
– Volatile
– Divides work into

iterations
– XP release plan
– RUP Phase plan

» Short Horizon

– A week to 2 or 3
months

– A single iteration
– More stable
– Iteration Plan (XP and

RUP)

20

Balance of Power

» Business People Make
Business Decisions

– Dates
– Scope
– Priority

» Technical People make
Technical decisions

– Estimates
– Risk Assessment

©2000 ThoughtWorks, Inc. All rights reserved

21

Business Leadership

» Needs efficient decision making from
business
– XP’s Customer
– Product Manager
– Part of team

» Skills
– Understands domain
– Understands how software can add value
– Determined to deliver a little value regularly
– Can make decisions on priority
– Accepts responsibility for project outcome

22

The Circle of Life

Customer

Customer

Developer Developer

build value define value

estimate costchoose value

©2000 ThoughtWorks, Inc. All rights reserved

23

Four Variables

» Cost
» Quality
» Time
» Scope

24

Cost

» People
– Effects are slow to appear and difficult to

predict
– Almost always non-linear

» Equipment
– Faster Computers
– Bigger Monitors
– Training
– Specialized consulting

» Morale improvers
– Motivation is a key driver to productivity

©2000 ThoughtWorks, Inc. All rights reserved

25

Quality

» External
– Niceness of interface
– Amount of defects
– Can be treated like scope

» Internal
– Quality of design

Low Internal Quality kills productivity

26

Scope and Time

» Scope
– Easy to see
– Easy to change

» Time
– Can only see at the end of project

Don’t think of having not enough time

Instead think of having too much to do

©2000 ThoughtWorks, Inc. All rights reserved

27

Release Planning

28

Release Plan

Find Lowest Fare

3

Show Available
Flights

2
Purchase Ticket

2Simple Customer
Profile

2

Review
Itineraries

1

Sort flights by
convenience

4

Full Customer
Profile

3

Cancel Itinerary

2

Print
Immigration

Paperwork 4

Show Hotels

3Show Hotel
Availability

2

Sophisticated
Hotel Search

3

Book Hotel

1

Hotel Programs

3Airplane Hire

3

Iteration 1 Iteration 2

Release 2
Release 1

Later Stuff

©2000 ThoughtWorks, Inc. All rights reserved

29

Shopping Metaphor

» Items
– Units of functionality (features, stories…)

» Prices
– Estimate how long it takes to do a story

» Budget
– How much you can do in an iteration

You can only buy what you can afford

30

Stories / Features

» Understandable to Business
» Promissory Note of Future Conversation
» Valuable to the Business

– Evolve Infrastructure
» Sized so you can do a few per iteration
» Independent of each other
» Testable

Chunk of Functionality of value to
business

©2000 ThoughtWorks, Inc. All rights reserved

31

Story Tips

» Conversation between business and
development

» Get early estimates from developers
– Helps spot vague and over-large stories
– Split large stories

» All the story is of same priority
» Trace to acceptance tests not to

production code
» You are never done

32

Use Cases and Stories

» Use Cases describe the interactions
between users and the system

» Stories divide up required function into
appropriately sized chunks

» Use use cases to understand flow of
system

» Then generate stories
– Usually one or more stories per use case

©2000 ThoughtWorks, Inc. All rights reserved

33

Yesterday’s Weather

» How much can we get done in this
iteration?
– As much as we got done in the last one

» How big is this task
– Find a similar size task you’ve done
– It’ll take that long

34

Yesterday’s Weather:
Consequences

» Won’t habitually over-estimate
» Encourages people to finish some tasks

rather than half-finish all
» Time to recover from bad iterations
» Easy to explain
» Updates to track complicated changes

©2000 ThoughtWorks, Inc. All rights reserved

35

Estimating Stories

» Find something you did that is of around
the same size

» Look at records to see how long it took
» That’s your estimate

36

Units of Estimation

» Ideal Time
– How much effort it would take without

distraction
– 5 ideal days == 5 ideal development days

» Gummi Bears

The units don’t matter as long as they
are consistent

©2000 ThoughtWorks, Inc. All rights reserved

37

Velocity

» How much you can do in an iteration
» Measured not guessed

– Use Yesterday’s Weather
– Add together the ideal time for all the

stories in the last iteration
» Wait to see effect of adding people
» Use for individuals and teams
» Not meaningful in comparing teams

38

The Circle of Life

Customer

Customer

Developer Developer

build value define value

estimate costchoose value

measure

cost

©2000 ThoughtWorks, Inc. All rights reserved

39

Allocating Stories to
Iterations

» Put stories in iterations so that sum of
the story estimates is no more than the
velocity

» Business Value
– Business decision

» Technical Risk
– Development assessment

» Dependencies
– Usually false

» Cost
– Estimated by developers

40

Example Stories

» Find Lowest Fare
– Present to the customer the ten lowest

fares for a particular route
» Show available flights

– Show possible flights (with connections)
between any two planets

» Customer Profile
– Keep customer details for quick reference:

eg credit card info, home address, dietary
and gravitational needs

©2000 ThoughtWorks, Inc. All rights reserved

41

Release Plan Example

Find Lowest Fare

3

Show Available
Flights

2

Purchase Ticket

2

Simple Customer
Profile

2

Review
Itineraries

1

Sort flights by
convenience

4

Cancel Itinerary

2

Print
Immigration

Paperwork 4

Show Hotels

3

Show Hotel
Availability

2

Sophisticated
Hotel Search

3

Book Hotel

1

Hotel Programs

3

Airplane Hire

3

Iteration 1 Iteration 2

Release 2 (at
iteration 4)

Velocity = 6

Later Stuff
Full Customer

Profile
3 Customer Profile

4

42

Release Plan Events

» Change Priorities
– Do any time

» Add Story
– Do any time, must remove others to make

room
» Rebuild

– Every three or four iterations, or if velocity
changes

– Re-estimate all stories and re-allocate

©2000 ThoughtWorks, Inc. All rights reserved

43

First Release Plan

» The hardest – but you only do it once
– No prior experience

» Guess velocity from similar projects or
exploratory work

» Story estimate with ideal time
– Do easiest first, then use comparison

» Iteration Length
– Anywhere from 1 – 3 weeks
– So make it two weeks

44

SCRUM Planning

» Backlog
– Customer maintains a prioritized list of

stories
» Sprint (iteration)

– At start of sprint, team chooses a set of
stories to do for that iteration

» Multiple teams can work off same backlog

©2000 ThoughtWorks, Inc. All rights reserved

45

Iteration Planning

46

Iteration Planning

» Planning for a short time horizon
– Single Iteration

» Plan generated by team
– Collaborative planning

» Timeboxed
– “forcing hard tradeoff decisions throughout

the project”

©2000 ThoughtWorks, Inc. All rights reserved

47

Iteration Planning
Meeting

» Whole team develops plan
– Communicates scope of iteration’s work
– Gets everyone involved and committed
– Improves everyone’s skills
– Accepted responsibility
– Improves Motivation

48

IPM: Steps

» Read the Stories
» Write the tasks for the stories
» Add technical tasks
» Developers sign up and estimate up to

individual velocity
» If there is too much to do, customer

defers stories
» If there is extra time, customer adds

stories

©2000 ThoughtWorks, Inc. All rights reserved

49

IPM: Reminders

» Individuals can sign up for whatever they
like

» Tasks can be shared across stories
» Don’t worry about dependencies
» Task estimates may not add up to story

estimates
» Customer chooses what to defer or add
» Individuals own tasks, useful for stories

to be owned too.

50

Tracking

» Roughly twice a week ask for each task:
– How many ideal days have done on it so

far?
– How many ideal days will it take before it’s

done
» Look for Too Much to Do

– Hand off to other developer
– Get help
– Ask customer to defer

©2000 ThoughtWorks, Inc. All rights reserved

51

When is Done?

» Tasks
– When the programmer says so

» Stories
– When the customer says so
– Tests should run but may not be perfect

» Iteration
– At the end of the timebox

52

Stand Up Meetings
(Scrums)

» Every day have a short meeting with
everyone to coordinate

» Everybody says
– What I did since the last stand up
– What I intend to do in the next 24 hours
– What blocks are in my way

» Defer large issues to subgroup

©2000 ThoughtWorks, Inc. All rights reserved

53

Visible Graphs

» Use big public charts to show measured
progress

» Pick graphs to solve problems
– Smell a problem
– Devise a measure
– Display the measurement
– If the problem doesn’t go away devise

another measure
– If the problem does away, retire the graph

54

Bug Tracking

» Bug Squashing Story
– Group bugs together into a story
– Use the regular planning process

» Production support team
– Rotate a small group to deal with bugs

» Critical Bugs
– Customer says which story should take the

hit

©2000 ThoughtWorks, Inc. All rights reserved

55

Final Thoughts
» Agile Projects need just as much (or

more) planning than any other project
» Agile Projects are designed for uncertain

environments
– Agile plans always change

[The French Marshals] planned their
campaigns just as you might make a

splendid set of harness. It looks very well,
and answers very well, until it gets

broken; and then you are done for. Now,
I made my campaigns of ropes. If

anything went wrong, I tied a knot; and
went on.

The Duke of Wellington

