

Software Process Engineering
Management

The Unified Process Model (UPM)

Initial Submission

OMG document number ad/2000-05-05

May 12, 2000

Submitted by
IBM
Rational Software
SofTeam
Unisys
Nihon Unisys Ltd.
Alcatel
Q-Labs (ex-Objectif Technologies)

Supported by
Valtech
Toshiba

Copyright 2000 by International Business Machines Corporation
Copyright 2000 by Rational Software Corporation
Copyright 2000 by SofTeam
Copyright 2000 by Unisys Corporation
Copyright 2000 by Nihon Unisys Limited
Copyright 2000 by Alcatel
Copyright 2000 by Q-Labs

The companies listed above hereby grant a royalty-free licence to the Object Management Group,
Inc. (OMG) for worldwide distribution of this document or any derivative works thereof within
OMG and to OMG members for evaluation purposes, so long as the OMG reproduces the copyright
notices and the following paragraphs on all distributed copies.

The material in this document is submitted to the OMG for evaluation.

Submission of this document does not represent a commitment to implement any portion of this
specification in the products of the submitters.

WHILE THE INFORMATION IN THIS DOCUMENT IS BELIEVED TO BE ACCURATE, THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The companies listed
above shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance or use of this material. The information contained in
this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved. Except
as otherwise provided herein, no part of this work may be reproduced or used in any form or by any
means—graphic, electronic or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems—without the permission of one of the copyright owners.
All copies of this document must include the copyright and other information contained on this
page.

The copyright owners grant member companies of the OMG permission to make a limited number
of copies of this document (up to 50 copies) for their internal use as part of the OMG evaluation
process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.

CORBA, Object Request Broker, UML, Unified Modeling Language, and OMG are trademarks of
Object Management Group.

Table of Contents

1 Introduction ..6

1.1 Overview..6

1.2 Modeling Approach...6

1.3 Scope ..7

1.4 Terminology...7

1.5 Relationships to Other OMG Specifications ...8
UML... 8
UML Profile .. 8
MOF 1.3 and XMI.. 9
Workflow.. 10

1.6 Proof of Concept ..11

2 Mapping to RFP Requirements..12

2.1 Mandatory Requirements: ..12
Four-layer Architecture .. 12
Relationship to UML and MOF... 12
XMI DTD.. 12
Basic Concepts .. 12
Process Examples... 13
Process Patterns and/or Components .. 13
Glossary .. 13
Support for UML... 13
Categories ... 13
Natural Language Translation... 14
Graphical Notation... 14

2.2 Optional Requirements ...15
Submission as a UML Profile... 15
Definition of Process Patterns and/or Components... 15
Reification of UML Profile Concept.. 15

3 Conceptual Model ...16

4 Package Structure...17

5 Basic Elements..18

5.1 NamedElement, VisibleName, and Language ...18

5.2 ProcessDefinitionElement and TextualDescription..18
Relationships.. 18

5.3 Dependency and DependencyKind ...19

6 Process Structure ..21

6.1 ArtifactKind and ArtifactName ..21
Relationships.. 21
Examples.. 22

Synonyms ... 22
Note ... 22

6.2 WorkItem, WorkDefinition, and WorkDefinitionName23
Relationships.. 23

6.3 ActivityKind and Steps ..23
Relationships.. 24
Examples.. 24
Synonyms ... 24

6.4 RoleKind..24
Relationships.. 24
Synonyms ... 25
Examples.. 25
Notes ... 25

7 Names ..25

8 Guidance ...25
Example.. 26
Relationships.. 26
Synonym... 27
Example of a Technique:... 27
Examples of a UML Profile ... 27
Example of a ToolMentor... 28
Examples of a ToolKind:... 28
Example of a Guideline:... 28
Example of a Template:.. 28

9 Process Components ...29

9.1 ProcessComponent..29

9.2 Process and ProcessFamily ...30

9.3 Discipline ...31
Example.. 31
Synonyms ... 31
Notes ... 31

9.4 ProcessLibrary...31

10 Process Lifecycle...32

10.1 ArtifactStateSet..32

10.2 Condition, Goal, and Precondition...32
Synonyms ... 34
Constraints ... 34
Examples.. 34
Note ... 34

10.3 Phases, Iterations, and Lifecycle ...34
Examples.. 34

11 Explanation of Enactment ...35

12 Management of Process Assets...37

13 UPM, UML, and MOF..37

13.1 UPM as a UML Profile ..37
Operations .. 38

13.2 Positioning in Four-layer Model..39

14 Glossary ...41

15 References..44

Annex 1: Translation table ..45

Annex 2: Overview of the model ..46

Annex 3: Proposed Graphical Notation ..47

UPM 6/6 v 1.6 - 05/11/00

1 Introduction
The following companies are pleased to submit this specification in response to
the Software Process Engineering (SPE) Management RFP
(Document ad/99-11-04):

• IBM Corporation, Steve Cook scook@acm.org
• Rational Software, Philippe Kruchten pbk@rational.com
• SofTeam, Philippe Desfray philippe.desfray@softeam.fr
• Unisys, Sridhar Iyengar Sridhar.Iyengar2@unisys.com
• Nihon Unisys Ltd, Hiromichi Iwata Hiromichi.Iwata@unisys.co.jp
• Alcatel, Laurent Rioux Laurent.Rioux@alcatel.fr
• Q-Labs, Annie Kunzmann-Combelles akc@objectif.fr

We also acknowledge support from:

• Valtech, Craig Larman craig.larman@valtech.com
• Toshiba, Mari Natori marin@sitc.toshiba.co.jp

1.1 Overview
This document presents the Unified Process Model (UPM). This model is used to
describe a concrete software development processes or a family of related
software development process. Process enactment is outside the scope of UPM,
although some examples of enactment are included for explanatory purposes.

1.2 Modeling Approach
We take an object-oriented approach to modeling a family of related software
processes and we use the UML as a notation. Figure 1 shows the four -layered
architecture of modeling as defined by the OMG. A performing process—that is,
the real-world production process—as it is enacted, is at level M0. The definition
of the corresponding process is at level M1. For example, the Rational Unified
Process 2000 (RUP2000) or the IBM SI Method is defined at level M1. Both a
generic process like RUP and a specific customization of this process used by a
given project, are at level M1. We focus here on the metamodel, which stands at
level M2 and serves as a template for level M1.

UPM 7/7 v 1.6 - 05/11/00

Process Metamodel

MOF

M0

M1M1M1M1

M2

M3

UPM, UML

e.g., RUP,
SI Method, Open

Process as really enacted
on a given project

Process Model

Performing process

MetaObject Facility

Figure 1—Levels of modeling

1.3 Scope
The UPM is a metamodel for defining processes and their components. A tool
based on UPM would be a tool for process authoring and customizing. The
actual enactment of processes—that is, planning and executing a project using a
process described with UPM, is not in the scope of this model. See Section 11
 for further explanation of the relationship between
the UPM and an actual process enactment.

In this proposal, we are limiting ourselves to defining the minimal set of process
modeling elements necessary to describe any software development process,
without adding specific models or constraints for any specific area or discipline,
such as project management or analysis.

We believe this is the appropriate approach for the software process engineering
domain, and any attempt to standardize a more complex and detailed model at
this time would be both unwise and ineffective. The standard wants to
accommodate a large range of existing and described software development
processes, and not exclude them by having too many features or constraints.

1.4 Terminology
There are a large number of process models and standards. Each one uses
slightly different terminology, sometimes with different meaning for the same
English word or phrase. For example, a `phase’ in Fusion [13] is called a `core
workflow’ in the Rational Unified Process (RUP) [1] and a `domain’ in IBM’s SI
Method. We will designate it as a `discipline’ here. OPEN [4] and the Rational
Unified Process [1] both use the word `activity’ but with a different meaning. We
have provided “translations” (aliases or synonyms) to help in understanding.
This also allows the naming of various process elements by the appropriate term

UPM 8/8 v 1.6 - 05/11/00

in various languages: Japanese, French, and so on. See Annex 1 for a comparison
table and Section 14 for the Glossary.

1.5 Relationships to Other OMG Specifications

UML

The Unified Modeling Language (UML) is a graphical language for modeling
discrete systems. Although the UML is not necessarily tied to any particular
application area or modeling process, its greatest applicability is in the area of
object-oriented software design. Version 1.1 of the UML was submitted to the
Object Management Group in September 1997 in response to an OMG RFP
requesting a standard approach to object-oriented modeling. The proposal was
ratified by the OMG in November 1997. Version 1.3 of the UML was finalized in
June 1999 and is the version referred to throughout this document.

The UML is defined by a metamodel, which is itself defined using a subset of
UML that maps onto the MOF (Meta-Object Facility). The UPM metamodel is
defined similarly.

The purpose of the Unified Process Model (UPM) is to support the definition of
software development processes specifically including those processes that
involve or mandate the use of UML, such as the Rational Unified Process.

UML Profile

A UML profile is a variant of UML that uses the extension mechanisms of UML
in a standardized way, for a particular purpose. Currently there is no normative
definition of a UML profile, however, the Business Object Initiative RFPs gave
the following working definition of a UML profile (OMG document ad/99-03-
10).

A UML profile is a specification that does one or more of the following:

• Identifies a subset of the UML metamodel (which may be the entire UML
metamodel).

• Specifies "well-formedness rules" beyond those specified by the identified

subset of the UML metamodel. "Well-formedness rule" is a term used in the
normative UML metamodel specification to describe a set of constraints
written in natural language and UML's Object Constraint Language (OCL)
that contributes to the definition of a metamodel element.

• Specifies "standard elements" beyond those specified by the identified subset

of the UML metamodel. "Standard element" is a term used in the UML

UPM 9/9 v 1.6 - 05/11/00

metamodel specification to describe a standard instance of a UML stereotype,
tagged value or constraint.

• Specifies semantics, expressed in natural language, beyond those specified

by the identified subset of the UML metamodel.

• Specifies common model elements (that is, instances of UML constructs),

expressed in terms of the profile.

A green paper (OMG document ad/99-12-32) has been issued that proposes a set
of requirements for a more formal specification of UML profiles. This document
is intended as input to the definition of UML 1.4.

The UPM metamodel is not defined as a UML profile, primarily because it is not
at all clear how UPM can be sensibly mapped onto a subset of the UML
metamodel. Section 13 of this proposal discusses why this is so.

The UPM metamodel includes a class that reifies the use of a UML profile within
a process and is discussed further in Section 8.

MOF 1.3 and XMI

The Meta-Object Facility (MOF) is the OMG's adopted technology for defining
metadata and representing it as CORBA objects. The MOF 1.3 specification was
finalized in September 1999 (OMG document ad/99-09-05). A MOF metamodel
defines the abstract syntax of the metadata in the MOF representation of a model.
The MOF model itself describes the abstract syntax for representing MOF
metamodels. MOF metamodels can be represented using a subset of UML
syntax. UPM is presented as a MOF metamodel.

XMI (XML Metadata Interchange) is the OMG's adopted technology for
interchanging models in a serialized form (OMG document ad/98-10-05). XMI
version 1.1 was formally adopted by the OMG in February 2000 (OMG
document ad/99-10-04). XMI focuses on the interchange of MOF metadata; that
is, metadata conforming to a MOF metamodel.

XMI is based on the W3C's eXtensible Markup Language (XML) and has two
major components:

• The XML DTD Production Rules for producing XML Document Type
Definitions (DTDs) for XMI encoded metadata. XMI DTDs serve as syntax
specifications for XML documents, and allow generic XML tools to be used
to compose and validate XMI documents.

UPM 10/10 v 1.6 - 05/11/00

• The XML Document Production Rules for encoding metadata into an XML
compatible format. The production rules can be applied in reverse to decode
XMI documents and reconstruct the metadata.

Because UPM is defined as a MOF metamodel, XMI can be used:

• to transform the UPM metamodel into a UPM Document Type Definition

• to transfer process models based on UPM as XML documents, based on the
UPM DTD

• to transform the UPM metamodel itself into an XML document, based on the
MOF DTD, for interchange between MOF-compliant repositories

Workflow

Within the OMG there are three initiatives that come under this heading.

The first is the Joint Workflow Management Facility (OMG document
bom/99-03-01). The scope of this facility is workflow enactment and it supports
Workflow Client Applications, Interoperability, and Process Monitoring as
described in the Workflow Reference Model. None of these areas overlaps the
SPE submission, which addresses the domain of process description, not process
enactment.

The second is the Workflow Resource Assignment Interfaces RFP (OMG
document bom/2000-01-03), which asks for submissions to extend the
capabilities of the adopted workflow management specification in the areas of
the assignment and selection of resources. The scope of this facility is also
process enactment and so does not overlap the SPE submission.

The third area of interest is Process Definition. At this time no request for
proposals has been issued. The matter is still under consideration, pending
discussions within the UML RTF and the UML 2.0 working group about how
UML Activity Diagrams will be supported and/or extended. This discussion
overlaps the scope of the current submission. We assume in this submission that
an appropriate resolution of the use of Activity Diagrams to describe workflows
will occur, and we provide a class in the proposed metamodel intended to
represent an element on a workflow diagram. Furthermore, in our experience,
although activity diagrams can be useful to represent flows through a software
development process, they are not usually the most effective way to describe
sequencing development activities. This subject is addressed in more detail in
Section 10.

UPM 11/11 v 1.6 - 05/11/00

1.6 Proof of Concept
The (meta)model presented here supports both the Rational Unified Process and
IBM's SI Method. Examples throughout the text show how particular elements in
the model are used in these and other processes. It is also supported by the
Rational Process Workbench (RPW), which is a process authoring tool based on
UML.

UPM 12/12 v 1.6 - 05/11/00

2 Mapping to RFP Requirements

2.1 Mandatory Requirements:

Four-layer Architecture

• Submissions shall conform to the four-layer architecture defined by the OMG.

UPM sits at level M2 in the four-layer architecture and further details are found
in Sections 1.2 and 13.

Relationship to UML and MOF

• Metamodels shall be clearly positioned in relation to the UML metamodel and built
using the MOF meta-metamodel. Relationships between these metamodels shall be
identified and specified.

The UPM metamodel is defined using a subset of UML in a similar way to UML
and to MOF. This subset of UML corresponds to the facilities supported by
MOF. The UPM metamodel is largely independent of the UML metamodel, with
the exception of the use of Activity Diagrams. UPM has not been defined as a
UML profile for reasons discussed in Section 13.

XMI DTD

• A submission shall include an XMI DTD for a submitted metamodel.

Such a DTD is not included in this initial submission. It will be included in the
final submission.

Basic Concepts

• The metamodel shall address at least the following concepts: Tasks, Techniques, Roles,
Products, Phases. Responses are not required to use these exact names.

The UPM supports the description of these concepts, not their enactment, in the
following ways:

• Tasks are modeled by ActivityKind (see Section 6.3)
• Techniques are modeled by Technique (see Section 8)
• Roles are modeled by RoleKind (see Section 6.4)
• Products are modeled by ArtifactKind (see Section 6.1)
• Phases are modeled by Phase (see Section 10.3)

UPM 13/13 v 1.6 - 05/11/00

Process Examples

• Submissions shall submit two or more examples of processes that use the submitted
metamodel.

UPM is specifically designed to underpin the Rational Unified Process and
IBM's family of methods, including the SI Method deployed throughout IBM
Global Services.

Process Patterns and/or Components

• Submissions are required to define constructs that enable the creation and use of
reusable process patterns and/or components.

The construct ProcessComponent, described in more detail in Section 9.1,
represents such a reusable piece of process.

Glossary

• Submissions shall include a full glossary of SPE terms. These terms shall have a clearly-
defined relationship to the constructs defined in the submitted SPE metamodel.

Section 14 of this document provides a glossary of the main terms used in the
metamodel.

Support for UML

• The facility shall support the use of UML for software engineering modeling and
process modeling. A specification of relationships between SPE constructs and UML
constructs is required, wherever such relationships exist. Facilities providing help in
UML usage, depending on the activity and on the development context, shall also be
defined.

The UPM can be used to define all kinds of processes, including those focused
on the specific use of UML. Instances of Guidance subclasses for describing
UML practices and tools would be created for an UML-specific process.

Categories

• A submission shall provide the facility to define a standardized set of categories. A
submission shall provide the ability to classify all process elements using these
categories.

The meta-class Discipline, explained in Section 9.3, supports a categorization of
process elements based on a partitioning of the ActivityKinds.

UPM 14/14 v 1.6 - 05/11/00

Natural Language Translation

• A submission shall be organized so that a process can readily be translated between
different natural languages without losing its structure.

Natural languages are represented by the class Language and are described
further in Section 5. The visible name of a process element in a given natural
language is separated from the internal model name. All structured textual
elements are kept separate from the structure of the process itself in the class
TextualDescription, which is also associated to one Language.

Graphical Notation

• Responses shall include graphical notations or default to UML notations. Where a
response makes notation recommendations other than UML it shall show the
relationship between those recommendations and other established process modeling
notations; for example, IDEF0. If a recommended notation is not UML-based, responses
shall explain why a different notation is better.

The intent of the UPM is to offer graphical notations for depicting software
engineering processes that are similar to those of UML. However, just using
UML diagrams is not readily feasible because of the difficulties in making UPM
a UML profile as discussed in Section 13. If we fail to make the UPM a UML
profile, then some mapping of concepts between UPM and UML will be
introduced in the final submission to show the correspondence between UPM
entities and UML.

Ideally a graphical notation for UPM would use class diagrams to depict
dependencies between process elements, such as work-breakdown structure or
product structure. It would use activity diagrams to depict sequencing of
activities or collaboration diagrams to show interaction between various roles.

Special icons need to be used to denote process-related concepts—artifacts,
roles, activities, and so on—to make these diagrams more expressive.

Annex 3 of this document provides an example of what a process notation could
look like.

Compared to IDEF0, which focuses mostly on activities, their decomposition,
and their sequencing, a UML-like set of process diagrams gives a much wider
palette of expression and allows the use of existing UML-supporting tools to
model the process.

UPM 15/15 v 1.6 - 05/11/00

2.2 Optional Requirements

Submission as a UML Profile

• A submission may define a UML profile.

This submission is not presented as a UML profile. Section 13 discusses the
reasons for this.

Definition of Process Patterns and/or Components

• A submission may define actual process patterns and/or components.

Actual process components are not included in the UPM.

Reification of UML Profile Concept

• Submissions may reify the UML profile concept. The way in which profiles may
constrain the development process, notations or tools may be emphasized. Relationships
between profiles and activities and between profiles and work products may be clarified.

The class UMLProfile, described in Section 8, meets this requirement.

UPM 16/16 v 1.6 - 05/11/00

3 Conceptual Model
At the core of the Unified Process Model (UPM) is the idea that a software
development process is a collaboration between abstract active entities called
roles that perform operations called activities on concrete, tangible entities called
artifacts [20]. Figure 2 depicts this fundamental conceptual model using the UML
notation for a class. Figures 2 and 3 are not part of the proposed model and are
given solely for explanatory reasons. They are intentionally very incomplete.

Role
activity (artifact)
activity (artifact)

Figure 2—Conceptual model

Multiple roles interact or collaborate by exchanging artifacts and triggering the
execution, or enactment, of certain activities. The overall goal of a process is to
bring a set of artifacts to a well-defined state.

From this model, a first step consists of “reifying” role, activity, and artifact. This
leads to the simple model shown in Figure 3.

Role

Activity
0..*

1

0..*

1

Performs

Artifact
0..*1 0..*1 IsResponsibleFor

0..*

0..*

0..*

input
0..*

Consumes

0..*

0..*

0..*

output
0..*

Produces

Figure 3—Reifying the conceptual model: roles, artifacts, and activities

Note that this simple conceptual model describes what happens during process
enactment and, as such, is not part of the formal model defined by this
submission. We return to this model in Section 11
 where the relationship between described processes and their enactment
is explained in more detail.

UPM 17/17 v 1.6 - 05/11/00

4 Package Structure
The UPM metamodel is divided into six packages, shown in Figure 4, called
Names, BasicElements, Process Structure, Process Components, Guidance and
Process Lifecycle. We address each package in turn in the next six sections.

Names

Basic Elements

Process
Structure

Process
Components

Guidance

Process
Lifecycle

Figure 4—UPM packages

UPM 18/18 v 1.6 - 05/11/00

5 Basic Elements
This package, detailed in Figure 5, defines the basic elements from which the rest
of the model is derived.

5.1 NamedElement, VisibleName, and Language
Most elements of the process metamodel are a specialization of a common
abstract class, called NamedElement, with a single attribute internalName. This
permits elements to have a textual name by which they can be referred in the
process model.

To allow the expression of a process in any natural language, a named element
can be associated to any number of VisibleName, which contains a Unicode
string of the name of the element in a natural language. An association to the
class Language specifies the language.

5.2 ProcessDefinitionElement and TextualDescription
Most elements of the process metamodel are also a specialization of a common
abstract class, called ProcessDefinitionElement, introduced to capture common
attributes such as a textual description. In particular, all process elements have
one or several descriptions in natural languages. WorkDefinition, ArtifactKind,
RoleKind, and Guidance are the main subclasses of ProcessDefinitionElement.

Relationships

• TextualDescription: one or more textual descriptions in natural language are
associated with each instance of a process definition element for its static
description. This can take into account variants of process, such as linguistic
variants, or more or less complex processes or techniques. For some
ProcessDefinitionElements, this textual description could be structured; for
example, by purpose, by properties, and so forth. A relation to the class
Language specifies the language of the description. The format of the
description is specified by an attribute format, such as HTML, PDF,
Microsoft Word, and so on.

§ Guidance: one or more guidance elements are associated with a process

element to provide help to the practitioner. Guidance is explained in Section
8.

UPM 19/19 v 1.6 - 05/11/00

ArtifactKindRoleKind WorkItem

DependencyKind

NamedElement
(from Names)

+ internalName : String

Guidance

Dependency

0..*
1
0..*

kind 1

VisibleName
+ externalName : Unicode

11..* 11..*

ProcessDefinitionElement
1..*

0..*

1..*

0..*

1

0..*

to
1

0..*

1 0..*from
1 0..*

Language

1

0..*

1

0..*

TextualDescription
+ content : sequence<octet>
+ format : enum{pdf, html, doc}

11..* 11..*

1

0..*

1

0..*

Figure 5—Basic Elements package

5.3 Dependency and DependencyKind
The definition of a process may introduce dependencies or relationships
between process definition elements, such as traceability dependency. This is
the responsibility of the Dependency class, which represents a one-way
dependency between process definition elements, and the DependencyKind class,
which represents the kind of dependency.

For example, an important document in IBM’s SI Method is the Work Product
Dependency diagram, represented in Figure 6. The rectangles in this diagram
indicate Work Product Descriptions—in UPM terms, instances of ArtifactKind as
described in Section 6.1. The arrows represent instances of Dependency
associated with an instance of DependencyKind named Work Product
Dependency.

Another DependencyKind is the Requires dependency used to create process
families (see Section 9.2). It indicates that the presence of a process definition
element in a process or family of processes explicitly requires the presence of
another one, even in the absence of model relationship.

UPM 20/20 v 1.6 - 05/11/00

System Mgmt
Plan

Software Dist-
ribution Plan

Deployment
Unit Matrices

Use Case
Model

Operational
Model

API

Non-functional
Requirements

Architectural
Template

Deployment
Units

I/T
Standards

Architecture
Overview
Diagram

Viability
Assessment

Technical
Prototype

SLC
Analysis

Current I/T
Infrastructure

Architectural
Decisions

Analysis
Class
Diagram

Component
Model

Reference
Architecture
Fit/Gap Analysis

 Reference
Architecture
(asset)

Architectural
Template
(asset)

dependencies to
and from most
other WPs

Other
Assets

Figure 6—A Work Product (Artifact) Dependency diagram from IBM’s SI Method

UPM 21/21 v 1.6 - 05/11/00

6 Process Structure
This package, shown in Figure 7, defines the main structural elements from
which a process description is constructed.

6.1 ArtifactKind and ArtifactName
An Artifact is anything produced, consumed or modified by a process. It may be
a piece of information, a document, a model, source code, and so on. An
ArtifactKind describes one kind of artifact.

Relationships

• ArtifactKind is a specialization of ProcessDefinitionElement (from Basic
Elements).

• ArtifactKinds can be composed of other ArtifactKinds (aggregate artifacts),
using the helper class ArtifactName.

• ArtifactKinds can be defined as individually-named inputs and outputs of a
WorkDefinition, through the class ArtifactUsageName, which indicates the
ArtifactKinds it uses.

• The attribute hasWorkPerArtifact indicates that you need multiple instances
of the WorkDefinition—one per instance of the corresponding artifact. For
example, Write the code of a class may have Coding standards and Class as inputs
but it is replicated once per class, not per coding standard.

Instances of ArtifactName designate the names of artifacts composed within the
scope of an ArtifactKind. With this class, an artifact kind can be named differently
within the scope of different containing artifact kinds; for example, a Plan could
be called “Risk Plan” in one scope and “Result Plan” in another. A given
ArtifactKind may be multiply-contained within the same scope under different
names; for example, a composite deliverable containing several Class Diagrams
could contain an Analysis Class Diagram and a Design Class Diagram.

UPM 22/22 v 1.6 - 05/11/00

ArtifactKind
(from Basic Elements)

+ isDeliverable : Boolean

WorkItem
(from Basic Elements)

Step ActivityKind
1

1..*

1

1..*

WorkDefinitionName
(from Names)

ArtifactName
(from Names)

RoleKind
(from Basic Elements)

0..10..* performer 0..10..*

0..* 0..*0..* assistant 0..*

WorkDefinition

0..*

1

0..*

1

1
0..*

1
0..*

1

0..*

1

0..*

1

0..*

1

0..*

0..*

0..1

0..*

0..1

IsResponsibleFor

ArtifactUsageName
(from Names)

+ isInput : Boolean
+ isOutput : Boolean
+ hasWorkPerArtifact : Boolean

1

0..*

1

0..*

1

0..*

1

0..*
IsOfKind

Figure 7—
Process Structure package

The isDeliverable attribute on ArtifactKind is true if that artifact is defined as a
formal deliverable of the process.

Examples

”Design Model” is an ArtifactKind that describes design models, which are
artifacts. “Software development plan” is an ArtifactKind that is an aggregate of
several other ArtifactKinds, such as documents and plans, designated by name;
for example, “Risk Plan”.

Synonyms

‘Artifact’ is the term used in the RUP for the description of the artifact; the IBM
process uses the term ‘Work Product Description’. Other processes use the terms
‘deliverable’ or ‘product’.

Note

Deliverable is not a major element in UPM because not all artifacts are
deliverable, and whether an artifact is delivered or not may change during the
enactment.

UPM 23/23 v 1.6 - 05/11/00

6.2 WorkItem, WorkDefinition, and WorkDefinitionName
A WorkItem is a ProcessDefinitionElement that describes the work performed by
roles. It is an abstract class, with two subclasses: WorkDefinition and Step.
WorkItems can be used in activity diagrams.

WorkDefinition is a ProcessDefinitionElement, a subclass of WorkItem that
describes the work performed by roles. Its main subclasses are ActivityKind, as
well as Phase, Iteration, and Lifecycle (in the Process Lifecycle package). Unlike
WorkItem, WorkDefinition can be recursively structured, and has explicit inputs
and outputs.

A WorkDefinitionName is a helper class whose instances designate work
definitions when creating aggregate work definitions. The introduction of this
helper class permits a WorkDefinition to be referred to with multiple names,
similarly to the use of ArtifactName for Artifacts.

Relationships

• WorkDefinitions can be composed of other WorkDefinitions (aggregate Work
Definitions), using the helper class WorkDefinitionName.

• A WorkDefinition is related to the ArtifactKind it uses through the
ArtifactUsageName class, which specifies whether they are used as input or
output. The work described in the WorkDefinition uses the input artifacts,
and creates or updates the output artifacts. Through the name attribute of the
ArtifactUsageName class, a given ArtifactKind can form multiple, differently
named inputs and/or outputs of a WorkDefinition.

The familiar concept of Work-Breakdown Structure (WBS) can be described
using two UPM constructs:
1. Composition using WorkDefinitionName provides the means to describe that

one ActivityKind is composed of another and, therefore the hierarchical
nature of the WBS.

2. The Dependency concept between ProcessDefinitionElements (inherited by
WorkDefinition) provides the ability to sequence between elements of the
WBS at the same level or to describe other dependencies between
ActivityKinds, ActivityGroups, and so forth.

6.3 ActivityKind and Steps
ActivityKind is the main concrete subclass of WorkDefinition. It describes a piece
of work performed by one role: the tasks, operations, and actions that are

UPM 24/24 v 1.6 - 05/11/00

performed by a role or with which the role may assist. An ActivityKind can be
decomposed into atomic elements called Steps.

Steps are a subclass of WorkItem and, therefore, cannot be decomposed. Steps
are performed by the same role as the enclosing activity.

Relationships

• ActivityKind inherits input and output artifacts.

• An ActivityKind refers to a RoleKind that is the performer of the described
activity and may refer to additional RoleKinds that are the assistants in the
activity.

• An ActivityKind does not use the composition structure inherited from
WorkDefinition; instead composition within ActivityKind is done using
Steps. Steps inherit the context of the enclosing ActivityKind in terms of the
RoleKind and ArtifactKinds they use.

Examples

In the RUP, Find use case and actors is an example of ActivityKind. It is
decomposed in half a dozen “steps” in the RUP: Find actors, …., Check the results.

In IBM’s SI Method, the “activity” Specify Solution Requirements is an example of a
WorkDefinition. It is decomposed into several “tasks”, modeled by UPM’s
ActivityKind, such as Detail Usability Requirements.

Synonyms

The Rational Unified Process uses ‘activity’ composed of a partially ordered set
of ‘steps’. The IBM process defines ‘activities’ that corresponds to UPM
WorkDefinition consisting of ‘tasks’ and ‘subtasks’ that corresponds to UPM
ActivityKinds.

6.4 RoleKind
A RoleKind defines a role, possibly a composite role, which a person, or a group
of people, may be called upon to play in a process. RoleKind defines
responsibilities over specific artifacts, and defines the roles that perform and
assist in specific activities.

Relationships

• A RoleKind is a specialization of ProcessDefinitionElement.

• A RoleKind is responsible for a set of artifacts.

UPM 25/25 v 1.6 - 05/11/00

• A RoleKind is normally the performer and/or assistant for several
ActivityKinds.

Synonyms

This concept is called ‘role’ in the IBM SI method and in OPEN [4], and ‘worker’
in the Rational Unified Process [1, 3]. We have also encountered ‘agent’.

Examples

In the Rational Unified Process, examples of workers are Architect, Analyst,
Technical Writer, and Project Manager to name a few.

Notes

A RoleKind is not a person. A given person may be acting in several roles and
several persons may act as a given role.

7 Names
The Names package, illustrated in Figure 8, contains just the classes that
represent the names that process description elements have in various contexts.
The function that each of these classes has in the metamodel has been described
in the Process Structure package. The purpose of the Names package is just to
show that each of the Name classes inherits from NamedElement and, in
particular, has an internalName attribute.

ArtifactName WorkDefinitionName

NamedElement
+ internalName : String

ArtifactUsageName

Figure 8—Names package

8 Guidance
The Guidance package, shown in Figure 9, includes classes representing various
kinds of support to assist the user of a process description.

The Guidance package represents any supporting guidance, including
instructions, procedures, technique, guidelines, checklists, examples, templates,
tool guides, metrics, and standards that may be required to help the practitioner

UPM 26/26 v 1.6 - 05/11/00

accomplish what is described in a ProcessDefinitionElement. Guidance itself is
an abstract class, and its association with ProcessDefinitionElement was shown
in the Basic Elements package.

Tools are a resource needed to run a process. Tools may be associated with
specific activities, which they may completely automate.

Example

In the RUP, tools are related to activities and artifacts by ToolMentors, which are
specializations of Guidance.

Checklist UML Profile Guideline

Guidance
(from Basic Elements)

Technique
Template

+ link : URLToolMentor

ToolKind

0..*

1

0..*

1

ProcessDefinitionElement
(from Basic Elements)

Estimate
+ effort : int

Figure 9—Guidance package

Relationships

• Guidance is a specialization of ProcessDefinitionElement.

• Each Guidance may be associated with one or more
ProcessDefinitionElements and many Guidances may be associated with each
ProcessDefinitionElement. Some specific uses of this flexible association are
explained in the descriptions of different kinds of Guidance described below.

UPM 27/27 v 1.6 - 05/11/00

Synonym

The OPEN process uses the term ‘technique’. Other processes use ‘procedure’ or
‘directive’.

Checklist is a subclass of Guidance. A checklist is a document representing a list
of elements that need to be completed.

Technique is a subclass of Guidance. A Technique is a detailed, precise
“algorithm” used to create an artifact.

Example of a Technique:

Using Petri nets, interviewing, identifying relevant classes, eliminating excessive
inheritance, constructing a GANTT chart, and tracking progress with the earned-
value method

UMLProfile is a subclass of Guidance. A UML profile provides mechanisms that
specialize UML for a specific target such as C++, Java, and CORBA or for a
specific purpose such as analysis, design, and so on. Every development activity
using UML can be ruled by a profile that dictates those UML consistency rules
that need to be applied or which UML model element is relevant for the current
context and focus of the activity.

The exact representation of a UML profile in the metamodel needs to be aligned
with the developments in UML 1.4 and UML 2.0.

Examples of a UML Profile

“UML for EJB”, “UML for Analysis”, “UML for CORBA”

Figure 10 presents a diagram example of such
an approach, where activities are connected to UML profiles.

Analyst

Quality
control

Code Generator

<<UMLProfile>>
UML analysis

Elaborate Analysis

Check Analysis

Produce Analysis
 Documentation

Figure 10—Example of a process connecting activities to UML profiles

UPM 28/28 v 1.6 - 05/11/00

ToolMentor is a subclass of Guidance. A ToolMentor shows how to use a specific
tool to accomplish an activity. Each ToolMentor is associated with a single
ToolKind and inherits the association with the ActivityKind it supports from
Guidance.

Example of a ToolMentor

“Using Rational ClearCase to Check Out and Check In Configuration Items”

ToolKind represents a particular kind of tool to be used in the process.

Examples of a ToolKind:

A CASE tool such as Rational Rose, a programming tool such as VisualAge for
Java, a testing tool, and so on.

Guideline is a subclass of Guidance. A Guideline is a set of rules and
recommendations on how a given artifact must look or must be organized.

Example of a Guideline:

In the Rational Unified Process, the Java Programming Guidelines are guidance
used in the implementation of a design class, as well as input for the activity of
code review.

In this example, we see connections from RoleKind occurrences such as
“Analyst” as performers, to ActivityKind occurrences such as “Elaborate
Analysis”, and from ActivityKind occurrences to a UMLProfile occurrence such
as “UML analysis”.

Template is a subclass of Guidance. A Template is a predefined document that
provides a standardized format for a particular kind of Artifact. The attribute
link would normally be a URL referring to a local file.

Example of a Template:

“Microsoft Word template for Business Use Case Modeling”

Estimate is a subclass of Guidance. An Estimate describes an effort associated
with a particular element. The description associated with an Estimate gives a
context and interpretation for the effort.

UPM 29/29 v 1.6 - 05/11/00

9 Process Components
Figure 11 details the Process Components package. The classes in this package
are concerned with dividing one or more process descriptions into self-contained
parts that can be placed under configuration management and version control.

9.1 ProcessComponent
A ProcessComponent is a chunk of process description that is internally
consistent and may be reused with other ProcessComponents to assemble a
complete process.

A ProcessComponent contains a non-arbitrary set of ProcessDefinitionElements.
Such a set must be self-contained; this means that there are no links from within
the component to elements not within the component. It must be internally
consistent in the sense that the multiplicities and constraints defined for the
metamodel as a whole must be satisfied within the scope of the component.

Composition of ProcessComponents is done by a process of unification. For
example, consider both of these:

• a ProcessComponent P1 that takes a set of high-level use cases and non-
functional requirements as input and delivers an architecture as output

• a ProcessComponent P2 that takes an architecture and a set of detailed use
cases as input, and delivers an executable, unit-tested body of code as output

To combine these two components, at least the output artifacts from P1 must be
unified (that is, made identical) with the inputs to P2. Other elements may
possibly be unified in addition, such as Templates, RoleKinds, and so on.
Composition of ProcessComponents can only be fully automated if they
originate from a common family so that the unification is obviously capable of
being automated. If the components originate from different sources, the
unification would involve human intervention that normally would consist of
some re-writing of the elements, and possibly associated elements, to be
unified–. Note that UPM permits both of these kinds of composition but
provides no explicit support for either.

UPM 30/30 v 1.6 - 05/11/00

A process component
must be self-contained
and all included
elements must
conform to meta-model
constraints

Discipline ActivityKind
(from Process Structure)

1 0..*1 0..*

Process

This partially redefines
the includes association

ProcessComponent

ProcessLibrary

ProcessDefinitionElement
(from Basic Elements)

0..*

0..*

0..*

0..*
Includes

1

0..*

1

0..*

IsOwnedBy

Figure 11—Process Components

9.2 Process and ProcessFamily
A Process is a ProcessComponent intended to stand alone as a complete, end-to-
end process. It is distinguished from normal process components by the fact that
it is not intended to be composed with other components. In a tooling context,
the instance of Process is the “root” of the process model, from which a tool can
start to compute the transitive closure of an entire process.

In addition to the “natural” relationships from the model, a process is defined
through a Requires dependency that imposes the presence of a
ProcessDefinitionElement when another ProcessDefinitionElement is part of the
process.

A Lifecycle, as defined in Section 10.3, is also a specialization of a Process.

UPM 31/31 v 1.6 - 05/11/00

The class Process can also represent a family of processes, which is a process
component out of which multiple overlapping processes can be defined.

9.3 Discipline
A Discipline is a particular specialization of ProcessComponent that partitions the
ActivityKinds within a process according to a common “theme”. Partitioning the
ActivityKinds in this way implies that the associated RoleKinds, ArtifactKinds,
and Guidance are similarly categorized under the theme. The composition
between Discipline and ActivityKind partially redefines the includes association,
in the sense that all ActivityKinds included in a Discipline are composed by the
Discipline. In other words, the Disciplines partition the ActivityKinds and the
ActivityKinds are lifetime dependent on the Disciplines.

Example

Nine disciplines are described in the Rational Unified Process 5.5: Business
Modeling, Requirement Management, Analysis & Design, Implementation, Test,
Deployment, Project Management, Configuration and Change Management, and
Environment.

Synonyms

The IBM processes use the term ‘domain’; the Rational Unified Process uses ‘core
workflow’; Objectory used ‘process component’; Fusion uses the term ‘phase’.

Notes

From the perspective of a static process description, the set of Disciplines used
in a given process, ProcessFamily or ProcessComponent establishes a
partitioning of all the static process definition elements. This means that no
instance of any ProcessDefinitionElement should be left out outside of a
discipline. High level introductory or reference material, such as introduction,
glossary, definitions or bibliography may be included in an additional
discipline.

9.4 ProcessLibrary
A ProcessLibrary provides another organization of ProcessComponents where a
ProcessDefinitionElement belongs to one, and exactly one, ProcessLibrary.
Process engineers use Process Libraries to manage the processes: define
ownership, version, variants of processes or process families, as well as their
delivery.

UPM 32/32 v 1.6 - 05/11/00

10 Process Lifecycle
In this package, shown in Figure 12, we introduce the process definition elements
that define how the process will be run. They describe or constrain the behavior
of the performing process, and are used to assist with planning, executing, and
monitoring the process. As we stated earlier, a process can be seen as a
collaboration between roles to achieve a certain goal or an objective. To guide its
enactment, we need to indicate some order in which activities must be, or can be,
executed. Also there is a need to define the “shape” of the process over time, and
its lifecycle structure in terms of phases and iterations.

Note that these elements do not describe the enactment itself: they are elements
in the process description that are used to help plan and execute enactments of
that description.

For low-level, detailed, deterministic kinds of activities, it is tempting to
document the workflow of a process as an activity diagram that shows strict
sequences of activities or as sequence diagrams that show sequences of activities
involving several roles. In this model, we are more concerned with identifying
the set of activities required to achieve a certain goal, expressed in terms of states
of artifacts, than precisely specifying the sequences of activities.

Nevertheless, if activity diagrams are required, UPM proposes to adopt the
metamodel for them directly from the UML specification by creating a reference
from the UPM class WorkItem to the UML metamodel class ActionState.

10.1 ArtifactStateSet
To each ArtifactKind we can associate a ArtifactStateSet. The ArtifactStateSet
represents the lifecycle of the specific artifact as a set of ArtifactStates. Each
artifact instance may have its own specific state set, often a trivial one with two
states: ‘not done’ and ‘done’. A slightly more complex state set could have the
states ‘created’, ‘under revision’, and ‘reviewed’. Transitions between states are
not represented explicitly; if required, they can be represented using the
Dependency class. ArtifactStateSets may be shared across multiple ArtifactKinds.

10.2 Condition, Goal, and Precondition
A Condition is defined as a set of artifact instances, each in a given state. This
element is important to define the goals or objectives of a process or any
WorkDefinition, such as major milestone, the objectives of an iteration, and so
on. It is also used to define a precondition to an activity. A Condition has a set of
ArtifactInStates each of which represents a particular artifact (by name) in a
particular state. Goal and Precondition are the two subclasses of Condition,

UPM 33/33 v 1.6 - 05/11/00

whereas condition is a specialization of ProcessDefinitionElement, which allows
the expression of informal conditions as text.

Iteration LifecyclePhase

10..* 10..* 11..* 11..*

Actually, these relationships
are derived from the
decomposition of Work
Definition, using Work
DefinitionName

ProcessDefinitionElement
(from Basic Elements)

ArtifactKind
(from Basic Elements)

ArtifactStateSet

1..*

0..1

1..*

0..1

HasStates

WorkDefinition
(from Process Structure)

Precondition
1

0..1

1

0..1

ArtifactState

1

1..*

1

1..*

Goal1
0..1

1
0..1

ArtifactUsageName
(from Names)

Process
(from Process Components)

ArtifactInState

1

0..*

1

0..*

1

0..*

1

0..*

Condition

0..1

1..*

0..1

1..*

Figure 12—Process Lifecycle package

A WorkDefinition may have one Precondition that is defined when the work it
describes can be executed. Each of a precondition's ArtifactInStates represents a
particular input artifact (by name) in a particular state. This means that the
WorkDefinition may not proceed unless all inputs are available in the correct
state.

A WorkDefinition may have one Goal, which describes the state in which the
artifacts it produces or modifies will be when it has finished execution. Each of a
Goal's ArtifactInStates represents a particular output artifact (by name) in a
particular state. This means that the WorkDefinition does not complete until all
outputs are available in the correct state.

UPM 34/34 v 1.6 - 05/11/00

Synonyms

Processes also use terms such as ‘Entry criteria’, ‘Exit criteria’, ‘Success criteria’,
and ‘Objectives’.

A Milestone is a goal for the completion of a major WorkDefinition, such as a
Phase.

Constraints

• The ArtifactUsageName associated with an ArtifactInState must be contained
within the containing WorkDefinition.

• An ArtifactInState is contained either by a Precondition or a Goal.

Examples

Barry Boehm [16] and the Rational Unified Process define four major milestones:
Lifecycle Objective (LCO), Lifecycle Architecture (LCA), Initial Operational Capability
(IOC), and Product Release.

Note

 We do not use the formal term ‘post-condition’ because it is not normally used
for a process, instead terms like ‘goal’, ‘objective’, and ‘milestone’ are used.

10.3 Phases, Iterations, and Lifecycle
A Phase is a specialization of WorkDefinition bounded by two conditions: a
precondition that defines the entry criteria and a goal, called “Milestone” in this
case, that defines the exit criteria. Phases are defined with the additional
constraint of sequentiality; that is, they are executed with a series of milestone
dates spread over time and often assume minimal (or no) overlap of their
activities in time.

Examples

The Rational Unified Process (RUP) defines four sequential phases: Inception,
Elaboration, Construction, and Transition. Moreover the RUP defines a phase as
consisting of a certain number of iterations, which are workflows with minor
milestones. OOSP has four phases: Initiate, Construct, Deliver, and Maintain &
Support [15].

A process Lifecycle is defined as a sequence of Phases that achieve a specific
goal. It defines the complete process to be enacted in a given project or program.
It is a Process and is discussed further in Section 9.2.

UPM 35/35 v 1.6 - 05/11/00

11 Explanation of Enactment
This section provides further explanation to the UPM by introducing some
classes that represent process enactment. This is done purely for the purpose of
explanation. The classes in this section are not part of the formal UPM definition
and are not part of the submission.

ArtifactKind
(from Basic Elements)

ActivityKind
(from Process Structure)

RoleKind
(from Basic Elements)

Artifact

Activity

1..*

0..*

1..*

0..*

Consumes

0..*

0..*

0..*

0..*

Produces

Role

1..*

1

1..*

1

Performs

0..*

1

0..*

1

IsResponsibleFor

0..*

0..*

0..*

0..*

Assists

Team Person

0..*

0..*

0..*

0..*
0..* 0..*0..* 0..*

Everything to the
left is outside the
scope of the formal
UPM meta-model

Reviewer

DesignReview

myDesignModel

DesignModel

review39

aReviewer <<powertype>>

<<powertype>>

<<powertype>>

Figure 13—Enactment

The class Role represents the enactment of a RoleKind. For example, the
RoleKind Project Manager might be enacted multiple times—in a given project

UPM 36/36 v 1.6 - 05/11/00

the answer to the question “how many project managers are there on this
project?” would be the number of instances of Role associated with the RoleKind
Project Manager.

We have introduced a class Person to show that the association of Person to Role
is many-many. A particular Person could play multiple roles; for example,
Project Manager and Architect. A given Role could be carried out by a group of
people; for example, Tester. The actual allocation of people to roles over time is
a scheduling task and scheduling is outside the scope of this model.

It is useful to think of the association between Role and RoleKind as a powertype
association. That is to say for each instance of RoleKind, there is a
corresponding subclass of Role. In the example above, we would introduce a
subclass of Role called ProjectManager. In Figure 13, we have shown a subclass
of Role called Reviewer. These subclasses may possess their own attributes,
associations and behavior.

In a similar way to Role, the class Activity represents the enactment of an
ActivityKind. Figure 13 could be readily expanded to show the enactment of
other subclasses of WorkDefinion. This area of the model could also be
extended to show the resources associated with the enactment of particular
activities such as tools, workstations, desks, chairs, and so forth. Modeling these
resources and their allocation to actual activities on a project is a planning and
scheduling task outside of the scope of this model.

Figure 13 shows a subclass of Activity called DesignReview and a subclass of
Artifact called DesignModel. We also indicate specific instances of Reviewer,
DesignReview, and DesignModel such as might be created (at level M0) in a
particular project.

We could further extend this area of the model to show that a
ProcessDefinitionElement is itself an Artifact. By doing so, we could define a
process to describe how the process definition itself is created or modified.

UPM 37/37 v 1.6 - 05/11/00

12 Management of Process Assets
The management of multiple processes, variants, derivatives or versions is
beyond the scope of this metamodel. As all techniques and tools used in the area
of configuration management and change management for software can be
applied literally to a software process product, it does not make sense to
replicate these aspects in the UPM. See standards IEEE 610.12-1990 or ISO 12207.

All ProcessDefinitionElements are configuration items. As such, they can have
multiple versions. The versions of a given configuration item are linked to each
other to form histories. Variants can be introduced by creating parallel histories. A
specific process configuration is formed by selecting one version, at the most, for
each ProcessDefinitionElement. If a process definition element is required in two
forms within a single process configuration, it must be cloned and given a
specific identity; for example, “simple design review” versus a “complex and
critical review”. Process variants are defined similarly by selecting
ProcessDefinitionElements from a consistent set of version histories all
belonging to the same variant. ProcessLibraries can be used for this purpose.

13 UPM, UML, and MOF
In this section, we discuss the following two topics:

1. the fact that UPM is not defined as a UML profile
2. the positioning of UPM in the four-layer architecture

13.1 UPM as a UML Profile

The RFP asks for the metamodel to be defined, if possible, as a UML profile.
This submission does not do so.

According to the paper Requirements for UML Profiles (OMG document ad/99-
12-32): "From a comparative perspective, UML Profiles form a metamodel
extension mechanism that imposes certain restrictions on how the UML
metamodel can be modified. For instance, it is not possible to insert new
metaclasses in the UML metaclass hierarchy (i.e. new superclasses for standard
UML metaclasses). It is also not possible to modify the standard UML metaclass
definitions, e.g. by adding meta-associations. Such restrictions do not apply in
MOF context: there in principle any metamodel can be registered with a
repository, and they can completely bypass or even ‘botch up’ UML (they can,
however, also apply the same restrictions as profiles embody)."

UPM 38/38 v 1.6 - 05/11/00

Therefore, for UPM to be a UML profile, it would be necessary for each UPM
class to identify a class in the UML 1.3 metamodel, either for use directly or from
which the UPM class could be derived by stereotyping. Furthermore, it would
be necessary to model every UPM association by an existing UML metamodel
association.

As a starting hypothesis, we would consider unifying the UPM
ProcessDefinitionElement with UML ModelElement. Given this hypothesis, here
we can identify some of the cases where we have not found a reasonable element
in the UML definition to support UPM requirements.
Naming
In several places in UPM it is possible for a process definition element to have
different names in multiple contexts. Unfortunately, the UML namespace itself
does not offer a way for a model element to have different names in different
contexts. A possible pattern for this in UML is Parameter but to use a Parameter
requires that the context in which the name occurs is a kind of
BehaviouralFeature and the element named is a Classifier. We see no
straightforward way of mapping UPM constructs to match this pattern.
Support for Natural Languages
UML provides no support for multiple natural languages such as internal and
external names.

Operations

To correspond to the conceptual model of UPM illustrated in Figure 2, we could
potentially unify WorkItem with UML Operation and RoleKind with Class.
However, doing this offers no obvious way to represent the decomposition of
WorkDefinition using WorkDefinitionName. This could, perhaps, be done by
means of special parameters but the resulting model would be obscure to say
the least.

This short list of issues is by no means exhaustive but serves to illustrate that
rendering UPM as a UML profile, although conceivably possible by applying
numerous workarounds, would not give rise to an elegant or readily
understandable proposal. We propose to continue to work on this issue
between now and the time of the final submission, because there are significant
advantages in formulating the UPM as a UML profile, mainly due to:

(a) the ability to use existing UML tools for process modeling
(b) the ability to leverage UML notation directly.

A different approach for extending UML has been adopted within the OMG in
the Common Warehouse Model (CWM) specification (OMG document ad/
2000-01-01). This specification defines an extension to UML by using MOF

UPM 39/39 v 1.6 - 05/11/00

facilities directly, rather than UML profile facilities. This is done according to the
principle that every class within the CWM definition inherits directly or
indirectly from some class in the UML definition. It is claimed in the CWM
definition that this permits the use of UML notation in the diagrammatic
representations of the CWM metamodel. It is straightforward in most cases to
see how this would work, although no normative definition exists of a mapping
from UML notational elements to CWM classes.

Therefore, an alternative for UPM is to adopt the CWM philosophy for extending
UML. This is a fallback position that we will adopt in the final submission
should it not prove feasible to map UPM as a UML profile.

Ultimately, these dilemmas point to more basic problems. First, we would
ideally like to be able to reuse a set of generic metamodelling patterns such as
the general ability for a container to contain elements and for elements to be
referred to by different names in different contexts. The current UML definition
does not provide such patterns, however, the work being done toward issuing
an RFP for UML 2 indicates that a future version of UML might. Second, we
would like a more flexible and precisely defined way to map from metamodel
elements defined in MOF to their notational counterparts. Once again, this is an
issue under consideration in the preparation of the RFP for UML 2.

13.2 Positioning in Four-layer Model
The UPM metamodel clearly fits at level M2 in the four-layer model and there is
no problem with this for the purpose of the current submission. However,
future extensions to this model intended for modeling process enactment do
give rise to some significant issues in positioning. For this discussion we refer
back to the example in Figure 13.

In this example the class RoleKind represents descriptions of Roles. For
example, there will be an instance of a RoleKind describing Reviewer and saying
things about what a Reviewer needs to do. RoleKind is a powertype of Role,
which means that for every instance of RoleKind there is a subclass of Role.
Therefore, a subclass of Role called Reviewer exists and there will be an instance
of Reviewer for every situation where this role is actually played (or is planned
to be played).

The issue is how can this example fit into the four-layer architecture? There
seems to be a number of possible choices, none of which are entirely satisfactory
and none of which are properly supported by the current architecture.

1. RoleKind is at M2 and Role is at M1. This corresponds to the RFP, which

states that models of specific processes exist at M1 while their metamodels

UPM 40/40 v 1.6 - 05/11/00

exist at M2.

Unfortunately there is no mechanism in the OMG architecture to represent
the concept of powertype between layers. Therefore, we must forget about
making RoleKind a powertype of Role. We can still create classes at M1
called Reviewer, ProjectManager, and so on, but they will not inherit from a
common superclass. We do not seem to have any way to define Role. Given
that most Roles will want to share the same behavior with regard to planning,
scheduling, associating with activities, and so on this lack of a common
superclass is a serious problem. This could be resolved while retaining the
layered positioning by extending MOF so that M2 elements can act as
powertypes for M1 elements.

2. Both RoleKind and Role are at M1. This resolves the problem of the
definition of powertype because UML (at M2) defines what a powertype is.

This conflicts with the architectural positioning mandated in the RFP, which
requires the UPM metamodel to be at M2. Also, it leads to a problem
because, elsewhere in the model, we have a class called "UMLProfile" that
reifies the notion of a UML profile. How can a model in UML (at M1) refer to
a reified UML Profile that conceptually seems to belong at M3?

3. RoleKind, Role, and Reviewer are all at M2, whereas MOF is extended to
incorporate the notion of a powertype between M2 elements.

In some ways this seems to make life easier. Then again we have to ask what
happens at M1? Instances of RoleKind ought to appear at M1, however, they
are actually appearing at M2.

In summary, although the current UPM submission can be readily positioned at
M2, the positioning of probable extensions to UPM in the four-layer model is
problematical and seems to require modifications to the layered architecture
itself. We note that such modifications are within the scope of the UML 2
Request for Proposal currently being drafted and we, therefore, propose that the
requirements for supporting the powertype pattern discussed here should be
included in that RFP.

UPM 41/41 v 1.6 - 05/11/00

14 Glossary
Activity

In the enacted process, an activity is a piece of work executed by one
role. The granularity of an activity is usually a few person-days.

Activity Kind
A Work Definition describing what takes place in one kind of activity.
Activities are the main element of work. See also Activity Group and
Steps.

Artifact
In the enacted process, an artifact is any piece of information or physical
entity produced or used by the activities of the software engineering
process. Examples of artifacts include models, plans, code, executables,
documents, databases, and so on.

Artifact Kind
A Process Definition Element describing one kind of artifact. Note that
ArtifactKind is the powertype that ranges over the class Artifact.

Component (see Process Component)

Dependency
A Dependency is a process-specific relationship between Process
Definition Elements. Examples of dependencies include Tracing
Dependency between Artifact Kinds and Precedence Dependency between
Work Definitions such as Activity Kinds. The Requires dependency forces
a ProcessDefinitionElement to be part of the same Process or
ProcessFamily as another.

Discipline
A discipline is a process component organized from the perspective of
one of the software engineering disciplines: Configuration Management,
Analysis & Design, and so forth.

Element (see Process Definition Element)

Goal
A goal is a specific condition that is satisfied at the end of a given Work
Definition such as the end of an activity group or a phase.

Guidance
Guidance is a Process Definition Element associated to the major process
definition elements, which contains additional descriptions such as
techniques, guidelines and UML profiles, procedures, standards,
templates of artifacts, examples of artifacts, definitions, and so on.

UPM 42/42 v 1.6 - 05/11/00

Iteration
An Iteration is a large-grained Work Definition that represents a
complete pass through the software engineering process and results in a
release (internal or external) of the software product.

Milestone
A milestone is a synonym for the goal of a phase.

Name
A Name is a way to explicitly denote a Process Definition Element.
Names are used in some process definition elements to designate other
process definition elements. Example of names are Input and Output of
Work Definition, or and the names of contained artifacts within their
containing artifacts.

Phase
A high-level Work Definition, bounded by a Milestone.

Process Component
A Process Component is a coherent aggregate of Process Definition
Elements organized from a given vantage point such as a discipline, for
example, testing, or the production of some specific artifact, for example,
requirements management.

Process Definition Element
An element describing one aspect of a software engineering process.

Process
A Process is a Process Component that contains a complete description
of a software engineering process.

Process Family
A Process Family is a set of Process Definition Elements that satisfy the
Requires dependency.

Process Library
A Process Library is a set of ProcessDefinitionElements that have a
common ownership. Every element is owned by only one Process
Library.

Role Kind
A Role Kind is a process definition element describing the roles,
responsibilities, and competence of one kind of role.

Role
A role denotes one of several roles that may be played by an individual
(or a small group of individuals) in the process. In the enacted process,
roles “execute” the activities.

UPM 43/43 v 1.6 - 05/11/00

State
An attribute of an artifact, defined in the State set associated to the
corresponding Artifact Kind.

State Set
Associated to an artifact kind, a state set defines the states that the
corresponding artifact can take during the process.

Steps
An atomic and fine-grained Work Definition Element used to
decompose Activities. Activities are partially ordered sets of steps.

Work Definition
A process definition element describing the execution, the operations
performed, and the transformations operated on the artifacts by the roles.
Steps, Activity, Activity Group, Iteration, Phase, and Lifecycle are kinds
of work definition.

UPM 44/44 v 1.6 - 05/11/00

15 References
This section is not by any means intended to cover the whole literature on
process and process modeling (see the extensive bibliography given in [6]), but
to give the principal sources we have used in elaborating this specification.

1. Rational Unified Process (RUP) 2000, Rational Software Corporation, Cupertino, CA (2000)
2. Ivar Jacobson, et al., Object-oriented Software Engineering—A Use Case Driven Approach , Addison-

Wesley (1992).
3. Philippe Kruchten, The Rational Unified Process—An Introduction, 2nd ed, Addison-Wesley-

Longman, Reading, MA (2000)
4. Ian Graham, Brian Henderson-Sellers, and HoumanYounessi, The OPEN Process Specification,

Addison-Wesley, London, UK, 1997, 314pp
5. B. Henderson-Sellers, S. Mellor, “Tailoring process methodologies,” ROAD/JOOP, Volume 12 no

4, July/Aug 1999 (?)
6. Jean-Claude Derniame, et al., Software Process: Principles, Methodology, and Technology, LNCS

#1500, Springer-Verlag, 1999.
7. Ivar Jacobson, Grady Booch, Jim Rumbaugh , The Unified Software Development Process, Addison-

Wesley-Longman (1999)
8. Grady Booch, et al., UML User’s Guide, Addison-Wesley-Longman, Reading, MA (1999)
9. Desmond D’Souza & Alan Wills, Objects, Components and Framework with UML—The Catalysis

Approach , Addison-Wesley–Longman (1998)
10. Jennifer Stapleton, DSDM—Dynamic Systems Development Method, Addison-Wesley (1998)
11. Walker Royce, Software Project Management—A Unified Framework, Addison-Wesley-Longman

(1998)
12. IBM, Developing Object-Oriented Software—An Experience-Based Approach , Prentice-Hall (1997)
13. Derek Coleman et al., OOD—The Fusion Method, Prentice-Hall (1994)
14. Alfonso Fuggetta & Alexander Wolf (eds.), Software Process, J. Wiley & Sons (1996)
15. Scott Ambler, Process Patterns—Building Large-Scale Systems using Object technology, SIGS Books

Cambridge University Press (1998)
16. Barry Boehm, “Anchoring the Software Process,” IEEE Software, July 1996, 73-82.
17. OMG, RFP for Software Process Engineering , 1.0, November 1999
18. 12207 ISO/IEC 12207 Information technology – Software life-cycle processes, ISO, Geneva, 1995
19. IEEE 1074-1997, Standard for developing software life cycle processes, NY, NY 1997
20. I. Jacobson and S. Jacobson, “ Reengineering your software engineering process” Object

Magazine, March 1995.
21. C. Larman, Applying UML and Patterns—An Introduction to Object-Oriented Analysis and Design,

Prentice-Hall (1997)
22. S. Cook and J. Daniels, Designing Object Systems: object-oriented Modeling with Syntropy, Prentice-

Hall (1994)

UPM 45/45 v 1.6 - 05/11/00

Annex 1: Translation table
This annex maps the terminology from different sources:

UPM Rational

Unified Process
5.5 [1]

IBM SI &
WSDDM [12]

OPEN [4] OOSP [15] Promoter [6] IEEE 1074-
1997 [19]

ISO/IEC
12207
[18]

Lifecycle Process Engagement
model
Process shape

Lifecycle
process

 Lifecycle Lifecycle
process

Lifecycle
model

Phase Phase Phase Stages Phase Phase Phase
WorkflowKind Iteration

Increment
Activity

 Iteration
Stage
WBS

 Activity

Milestone Milestone
Discipline Core workflow Domain (SI)

Phase (Wisdom)
Activity Activity

group
Process

RoleKind Worker Role Rôle Role Role
ActivityKind Activity

Step
Task

Task
Subtask

Task
Activity

Activity Activity Task

ArtifactKind Artifact Workproduct Deliverable Deliverable Product Product Artifact
Software
product
Lifecycle data

GuidanceKind Guidelines
Tool mentors
Templates….

Technique
Procedure

Technique Guideline
Standard

Direction

Person Person Person Resource Performer
Agent

 Resource

Team Team Organization Organization Developer
ToolKind Tool Tool

UPM 46/46 v 1.6 - 05/11/00

Annex 2: Overview of the model
This class diagram summarizes the main classes in the Unified Process Model.

WorkItem
(from Basic Elements)

WorkDefinitionName
(from Names)

WorkDefinition
(from Process Structure)

1

0..*

1

0..* 0..*

1

0..*

1

Process
(from Process Components)

Lifecycle
(from Process Lifecycle)

Phase
(from Process Lifecycle)

1

1..*

1

1..*

ArtifactUsageName
(from Names)0..*

1
0..*

1

ArtifactName
(from Names)

ArtifactKind
(from Basic Elements)

0..*

1

0..*

1

IsOfKind

0..*

1

0..*

1

0..*

1

0..*

1

Discipline
(from Process Components)

RoleKind
(from Basic Elements)

0..1

0..*

0..1

0..*

IsResponsibleFor

ActivityKind
(from Process Structure)

0..*
1

0..*
1

0..1

0..*

performer
0..1

0..*

0..*

0..*

assistant
0..*

0..*

DependencyKind

(from Basic Elements)

Guidance
(from Basic Elements)

Dependency
(from Basic Elements)

0..*

1

0..*kind

1

ProcessComponent
(from Process Components)

ProcessDefinitionElement
(from Basic Elements)

1..*

0..*

1..*

0..*

1
0..*

to1
0..*

1
0..*

from

1
0..*

0..*

0..*

0..*

0..*

Includes

ProcessLibrary
(from Process Components)

0..*
1

0..*
1

IsOwnedBy

Figure 14—Overview of the UPM model

UPM 47/47 v 1.6 - 05/11/00

Annex 3: Proposed Graphical Notation

This section suggests how a process notation for UPM could look like, using
UML-like diagrams.

UPM Element Icon Comments
RoleKind

ActivityKind

ArtifactKind

Simple artifact,
Document
Model
Aggregate of artifacts

WorkDefinition

Other than ActivityKind

ProcessComponent

Process

UPM 48/48 v 1.6 - 05/11/00

Diagrams similar to UML class diagrams could be used to represent
ArtifactKind composition or dependencies, work breakdown structure or
groupings in ProcessComponents, as shown in sample Figure 15. In this
suggested diagram, the name and the entity designated by this name have been
collapsed in a single pictorial element to make the diagram less cluttered and
more legible.

DesignModel

Designer

+IsResponsibleFor

+performer

Reviewer

+assistant

+performer

+performer
Architecting

DetailedDesign

Review

Initial Design
ProcessComponent

ClassDesign

UseCaseDesign

Figure 15—Example of process component

UPM 49/49 v 1.6 - 05/11/00

Diagrams like UML activity diagrams could be used to represent sequencing of
WorkItems (see sample Figure 16).

Figure 16—Activity diagram

