
Alan Cameron Wills UML meets XP 1

UML meets XP
Position statement for UML + extremity workshop, UML2001

Alan Cameron Wills
Trireme International Ltd
www.trireme.com alan@trireme.com

I have always been a strong believer and practitioner of the JFDI approach to
development, which yields high morale, early identification of problems in design and
of any misunderstandings of the requirements, and easily tracks changing needs as
they occur. I applaud eXtreme Programming [Beck] for enunciating some excellent
guiding principles that separate this approach from iterative hacking.

And yet I also have always believed in using models to understand abstractions during
the design; and to communicate them to others both during the design and afterwards.
The one aspect of XP I’m not keen on is the disdain for documents and models other
than those enshrined in the code and tests. Nevertheless, it’s undeniable that any
documents separate from code and tests can and will get out of step with them, and
will not be read.

This position paper outlines some of my experience, as a consultant methodologist
with a number of clients, in attempting to get the benefits of XP at the same time as
those that follow from using modeling techniques.

What does XP give us?
XP is a rigorous approach to software development, in the sense that specifications are carefully
encoded before implementation, and the latter is verified against the former: executable tests are
arguably the most practical kind of specification. Unlike earlier rigorous methods (such as [Jones],
[Morgan]) XP answers the question “but how do you know you’ve got the specification right?”

Client

Fast Software Inc

requirements

Softwareincremental delivery

Developer

Tight customer-developer loop ensures that any misunderstandings in the developer’s mind about
what the customer wants are soon corrected. The same goes for any misunderstandings in the
customer’s mind about what is needed.

Regression testing makes it possible to elaborate and refactor the code in many small increments,
without the bug count going out of control. XP developers reckon that up to 50% of their time is spent
designing unit (and integration) tests; the investment pays off in robust and reliable resulting code – if
the tests are designed well.

If we are to try to improve on orthodox XP, we should not lose these characteristics.

Alan Cameron Wills UML meets XP 2

Why do we need more than XP?
Communication and discussion of abstractions. Most of us can’t hold a design in the head without
some means of writing down various abstractions: requirements, relationships, collaborations. UML is
generally a better medium for this purpose than code, whether of implementations or tests. Automatic
test code may be the most practical form of specification; but it is not very readable as a modeling
medium. In my work with medium to large projects, we have found it impractical to use program code
and informal stories as the only means of discussing the requirements and the architecture of the
system – especially where there is a large team made up of people of varied experience.

Separation of analysis and development roles. Some people are better at talking to customers and
warmly empathizing with their needs; others are better at neat, cool, performant solutions. We find it
necessary to separate these roles.

Component interfaces, design patterns. Any kind of generalization needs (a) a process for
abstracting and generalizing; and (b) a notation for describing how to use the result. In component
based development, it is important to be able to describe the component interfaces, and the concepts
with which they deal, separately from the components themselves.

Roles of UML
Many tools support a direct correspondence between UML and program code, and can be
parameterized to work within different architectures and idioms. Designers can effectively write
programs in UML.

I find these features very useful, but not sufficient for the development job. There are important cases
where I want to create models that do not represent the implementation:

− In component based development, it is important to write definitions of the interfaces or
connectors, separately from the implementation of any component; and separately even from
the specifications of any one component.

− The same is true in enterprise application integration: the diverse systems you are integrating
must speak a common language at their interfaces, but may have very diverse and unknown
implementations.

− Implementations typically have many classes that are not intrinsic to the problem, but are
introduced in order to improve performance or maintainability. In analysis, I want to stick to
describing the problem rather than the solution.

In our approach, we therefore separate two uses of UML: requirements models define the behavior
visible from outside a system or component; implementation models are used by designers to define the
internal structure of the system. Requirements models say nothing about the internal implementation.

Using a Requirements Models within an XP-like process
In consultation with our clients, we have gained some experience in meeting the above needs, whilst
preserving the benefits of XP. Of course, the result has much in common with other iterative processes,
such as RUP. However, we note a number of improvements on other approaches. For now, we’ll call
this approach XP/RM.

Alan Cameron Wills UML meets XP 3

Client

Brilliant Software Ltd

Software

incremental delivery

Designer

ideas

queries, animations

Requirements
Model

Analyst

requirements

iterative testing

The process introduces a Requirements Model, in which is captured everything we think we are going
to provide that will be visible to the customer. That document will typically include a UML model of
the functional requirements; but also non-functional requirements (performance, robustness, usability,
etc). It will include use-cases, classes, business rules and protocols. It captures everything the
developer needs to know to create the software.

The Requirements Model is created and maintained by systems analysts, who may be separate from the
developers. The developers treat the analyst as their customer. The Requirements Model is a
specification of the required system behavior – not an implementation model that reflects the code.
(Although the developers might use implementation models for their own purposes.)

Notice that there are now two major loops: the Analyst’s loop, which incrementally builds a model of
the customer’s requirements; and the Designer’s loop, which incrementally builds software to meet
those Requirements.

It is important to stress that the arrows in the diagram represent flows of information that operate more
or less continuously in peristaltic fashion. The designers do not wait until the model is anywhere near
complete before beginning to create software. The model should be developed in parallel with, or in a
slight lead of, the software. The designers may talk to the clients and should sit in on some of the
modeling sessions; analysts should monitor development closely, and should represent the customer to
the designers.

The Analyst’s Loop
In XP, the loop between the customer and the developer ensures that the developer’s successive
approximations to the required solution are kept on track, and are responsive to changes in
requirements that occur during development.

In XPRM, the loop between customer and analyst builds a model by successive approximation. Good
analysts have always worked closely and continuously with their clients; but we emphasize:

• The need to work from broad sketch to more precise detail in key areas, so that the developers can
start work. We usually start by identifying the principal concepts and business use-cases, together
with rough non-functional requirements in the areas of response times, security, numbers of users,
and storage requirements.

• Applying analysis techniques that tend to expose ambiguities and inconsistencies in the
requirements as stated by the customer. Standard use-case analysis doesn’t score highly in this
respect; we use multiple overlapping views and lightweight cross-checks (detailed below). The
purpose is to feed a stream of searching questions back to the client, resulting in more accurate
model than would otherwise have been obtained.

Notice that the Requirements Model is placed in-house. We don’t necessarily expect the analyst’s
model to be part of the customer contract. Its purpose is as a technical document for us to clarify and
agree between ourselves what we’re providing to the customer. It’s part of the analyst’s role to interpret
the model to the customer, either by animation or storyboards, or by agreeing requirements statements,
or just by asking questions while the model is being constructed.

Alan Cameron Wills UML meets XP 4

The Designer’s Loop
Designers work from the requirements, as captured in the Requirements Model. The designed software
is tested against the model as it is developed; and is demonstrated to the customer at regular critical
points (usually about every two weeks). The collusion between designers and customers is slightly less
close than in XP: the effect is to funnel requirements through the analysts. This can be especially
helpful if the customers are actually a diffuse group.

The designers may use UML to make an implementation model: that is, a model that directly reflects
the structure of the program code. This kind of model is supported very well by tools such as Together,
Rose, and some others. Code is generated directly from the diagrams, and vice versa.

The designers may use UML to represent the implementation; and they might or might not do the
design by making simple extensions of the Requirements Model; but we don’t focus on that here.

Testing
The process of testing against the requirements model is more accurately represented as a flow from
model to test software. In a substantial project, there is a separate test team to make this happen. We
should distinguish between unit tests, which are written by the developers themselves for internal
structures; and functional tests which test the entire system or component, and are derived from the
Requirements Model.

Client

Brilliant Software Ltd

Software

incremental delivery

Designer

ideas

queries, animations

Requirements
Model

Analyst

requirements

Functional
Tests

Tester

(This process model doesn’t show any unit tests, just as it doesn’t show any models that are internal to
the design process.)

Benefits of upfront requirements models
Our experience to date is that this approach has a number of benefits:

• Rapid exposure of gaps and inconsistencies. Applying our checking techniques while creating a
model raises searching questions about the stated requirements very early on: more rapidly than
even a manic XPer could generate prototype code. Thus many misconceptions can be ironed out
more rapidly than with pure XP.

• High-level requirements view. Putting the customer in front of a working prototype can
sometimes focus the mind unhelpfully on the user interface. Asking the customer about use-case
scenarios, goals of use-cases, relationships between objects, and business rules, tends to give more
useful feedback.

• Damping requirements swings. Customers have a tendency to make contradictory statements
about what they want, and may change the requirements and later change them back again. The
cause may be different factions within the customer organization; or uncertainty in the business
world. The interposition of an analyst between the customer and the developers tends to even out
some of these wild swings.

But to make the combination of UML upfront work with XP, we have to consider:

• how to avoid jeopardizing XP's responsiveness to change;

Alan Cameron Wills UML meets XP 5

• how to converge on the correct requirements in the analysis loop;
• the relationship between use-cases and incremental development tasks;
• the relationship between tests and the requirements model.

Building Requirements Models in XPRM

What’s in a Requirements Model?
The Requirements Model says nothing about internal structure: no responsibilities or operations are
assigned to classes (unless they are visible at the external interface), and no collaborations are defined
between objects. The only operations are those visible at the external interface to the system or
component being specified; the only collaborations are those in which the component being specified
takes part. A requirements model does define classes, but only those intrinsic to the problem domain.

The process of design decides how the implementation works and, if it is an OO or component based
solution, decides what the objects or components shall be, what their individual responsibilities shall
be, and how they collaborate to fulfill the Requirements.

Requirements Model

Describes what’s visible
from outside

Design Model

A Requirements Model contains:

• Use cases, documented largely according to [Cockburn]; but with substantial emphasis on
postconditions – the effect of each operation the system is asked to perform. This is particularly
important at “sea level” (in Cockburn’s terms: use-cases at the level of detail that describes
individual transactions performed by the system or component, such as “place an order” or “accept
stock delivery”).

• Class diagrams declaring all the concepts used in the use-case postconditions. The classes do not
have operations: behavior is described in the use-cases. (Assignment of responsibilities to classes is
a designer’s job.) The class diagram does not describe the internal structure of the implementation;
it describes relationships between concepts understood by the system.

• Business rules, defined in terms of constraints on the concepts, and constraints on sequences of use-
cases.

• Non-functional requirements, described in terms of the classes and use-cases.

Model elaboration techniques
Analysts construct models by using a set of techniques or patterns directed at creating a model in
successive approximations, starting from something very simple, and elaborating in short steps. Some

Alan Cameron Wills UML meets XP 6

of the steps are exploratory, asking the client directed questions about the business and the system
required; others are checks designed to expose ambiguities or inconsistencies.

In our approach, multiple views are constructed, which must tie up with each other. There are multiple
‘vertical’ views – the system or component as seen by different users, through different interfaces: they
must have the same meanings for common concepts, follow common rules where concerns overlap,
and have compatible expectations of the system where they ask it to do the same thing; we won’t go
further into vertical views and their composition here.

There are also multiple ‘aspects’: these are different formalisms that abstract different kinds of
information: for example, use-cases, class diagrams, and statecharts. We make these tie up in a way
that is not currently widespread among analysts; and find it a very effective way of discovering
ambiguities and inconsistencies.

We have a number of patterns for this purpose. Rather than reciting them directly, we’ll illustrate just a
few.

Spot nouns and verbs
You’ve heard this one before. Nouns –> object types, verbs –> use-cases. We construct both kinds of
view in parallel. This gives a first approximation to a model.

Use cases specified in terms of type model
For example, if we have:

use case Check Guest into Hotel
post: The Guest is now the occupant of a room in the Hotel, that was previously
unoccupied.

We can envision the situation before and after an instance of this use-case in an instance diagram, by
representing some instances of sample Rooms, Guests, and occupant relations between them. The
straight red link (pat–101) represents the change to the “after” situation.

Hotel

Person Room
0..1
occupant 0..1

accommodation 1..*

1

0..* guests

0..1
hilton: Hotel

jo: Person
101: Room

occupant

accommodation

guests

sam: Person

pat: Person

102: Room

103: Room

occupant

type diagram instance diagram == “snapshot”

occupant

From all of the instance diagrams used to illustrate all the use-cases, we can derive a type diagram
summarizing the concepts used in the use-case model, and which are sufficient to explain it.

An analyst might begin by asking about what happens in the hotel, document the use-cases, and from
there derive a type diagram. Developing the two things works in parallel.

A number of standard questions can then be asked about the types and associations we’ve found: what
are their cardinalities (how many Rooms can a Person occupy? etc); what else happens to these objects
and associations? One way of investigating that question is to draw a statechart for a selected type.

Descriptive Statechart
By asking “how is one of these created?” and repeatedly “what might happen to it then?” we can create
a statechart. (In a requirements model, these are purely descriptive: states are just Boolean assertions.)
For example:

Alan Cameron Wills UML meets XP 7

Unoccupied

Occupied

Dirty

Maintenance

reinstate

withdraw

withdraw

clean

check in

check out

Room

build

The transitions here are use-cases, which have been discovered by the process of drawing the
statechart. We have also discovered some of their pre and postconditions – e.g. a precondition of
withdraw (a room from service) is Dirty or Unoccupied. We can now write specifications for each of
these use-cases.

Association types
Any association can be turned into an object, if it has useful attributes and states of its own. For
example, we might create an Occupancy type to represent the occupant association, and then draw a
statechart of it – thereby discovering the fate of cancelled bookings, unpaid stays, changes of room, etc.

Static constraints
Wherever there is a loop in the associations in the type diagram, there is a question about whether the
instances must, must not, or might have an equivalent loop. Referring to the type diagram above: if a
Person (e.g. Jo) is a guest in a Hotel (e.g. the Hilton), must the Room Jo occupies be part of the
accommodation of that same Hotel? (The answer might be No, if the Hilton could have an arrangement
with a neighbor for dealing with overbooking; it depends exactly what the associations signify: if the
guest link points at the hotel you pay your bill to, while the accommodation link points to the Hotel the
room is physically part of.)

Questions like this reveal certain kinds of business rule, that the system would have to observe.

Summary: Model elaboration patterns
Model elaboration techniques like these (and others – we have a battery of them) help to ensure that a
broad, accurate view of the customer’s requirements is obtained, without the undue focus on the user
interface that arises from prototypes. This is a considerable improvement on plain XP.

The formalization of the requirements can be almost as effective as writing a prototype, in terms of
ironing out ambiguities and gaps in the requirements; but it can be done by analysts who are expert in
analysis rather than programming; and can be done separately for different views of the system, even if
they will overlap in an implementation.

Component Based Development
eBusiness demands rapid response from the software development trade: and one of the ways we can
achieve that is by building software from large or small components. This works best when the
components form a kit of interchangeable parts – as in the Java windows system, or the Unix standard
library. Each kit is designed to work well within a certain domain.

In such a component kit, we can make models of a number of things:

• The design of any one component. The model represents the classes in the program code, their
responsibilities, and the collaborations between them.

Alan Cameron Wills UML meets XP 8

• The specification of a component. Since there may be several interchangeable designs that meet the
same specification – for example, to store sets of things, or to sort things – it is necessary that the
specification model does not imply anything about the design.

• The specification of a connector. If we want that the components can be assembled in many
configurations (like Lego), then we need to define a small number of standard interfaces. In Unix,
the pipe is the standard connector; in Java Beans, there are events and properties; in Java AWT,
there is the window-containment relationship, and in Java I/O, the filestream. The fewer connectors
in the kit architecture, the more flexible the configurations available. These connectors have to be
carefully defined, especially if third parties are going to create components for the kit.

In the last two cases, the model has no connection with any design, except that a design should
conform to the behavior it stipulates.

If the components are developed according to the principles of XP, the specifications should be
rendered as tests. There is an argument that the tests are the best specification, and that diagrams etc are
superfluous. But I find that tests obscure the overall picture: they are difficult to abstract from and
manipulate in the mind. Therefore, I would prefer to write component and connector specifications in
UML/OCL/natural language; and derive the tests from those models.

It is clear that in the context of CBD, it is by no means the whole story to use UML as a programming
language. The essence of pluggability is specification, purely of externally-visible behavior; and the
ability to check conformance to specification.

Deriving Tests from Requirements Models
The delivered software should of course conform to the Requirements Model. We can’t generally
derive designs from requirements models because they tend to be partial, and so the designer has to
apply skill and judgment to complete the design. But a test only needs to try exactly what is in the
requirement: so ideally we should be able to derive tests from a requirements model. If it could be done
automatically, this would create a solid verifiable link between the requirements and the code. If we
can’t do that, the model and the code might drift apart.

However, the requirements model (and hence the tests) is normally much more stable than the code.
Adding a new feature may mean modifying existing code; but we only need to add new tests for the
new feature, without altering existing tests. Tests need to be altered only when existing requirements
change. This ‘monotonic’ property of the development process mitigates the problem of model/test
divergence: the comparative rarity of alterations makes it acceptable to derive tests systematically by
hand from the requirements; this is the role of the Test Team.

The rest of this section investigates the systematic derivation of tests from the requirements model.

Testing framework
We distinguish between a Test Monitor and a Test Harness. A Test Monitor sits at the interface to a
component or system, monitoring everything that goes in and out and checking whether the
component’s responses meet the requirements. It is used within a running system. The Eiffel language
provides for Test Monitors: the language allows for pre and postconditions to be attached to each
message; a compiler option inserts code that checks them on entry and exit to each method. In debug
mode, a system with activated Test Monitors runs slowly, but the functionality is checked.

A Test Harness is a set of software elements that surround a component under test; it runs offline,
separately from the target context. It fires a sequence of messages at the component, and checks that all
the right stuff comes back. It can check performance.

Using a Test Harness is the only serious way to be able to test a component automatically in a
repeatable manner. In an incremental design context, repeatable tests are essential.

Alan Cameron Wills UML meets XP 9

component
under test

adaptor

component
under test

Test case
generator

Testing everything in and out,
in the running system
(like Eiffel)

Testing Offline
(like JUnit)

test
monitor

Test Harness

test
monitor

to other components

adaptor

(The purpose of the Adaptor is to convert to and from whatever interface protocol is used at the
surface of the component under test. One component might present a COM interface and another an
HTTP interface; the Adaptor accepts commands from the Test Monitor to generate the appropriate
COM or HTTP sequences; and translates outputs back again.)

Test case generation
A Test Harness can be thought of as a Test Monitor plus a prescription for the test messages that should
be sent: a Test Case Generator.

Since we can’t check all points in the space of possibilities, we have to have some strategy for choosing
sufficient representative points to check all the zones and boundaries in the state space. This is perhaps
the most difficult aspect to automate, and is a subject of ongoing research.

“White box tests” look at the program code being tested, and try to generate cases that exercise all
routes through the code. But in a CBD context, we often don’t have access to the code; and if the
specification is of a pluggable interface, we don’t know at the time of writing the tests, which
component will be plugged in.

“Black box tests” are designed without knowing the internal structure of the component under test. In
generating test cases, we look for boundaries in the problem space. For example, we would guess that
any piece of software that can deal successfully with 3, 17, 33 and 127 items in a purchase order can
probably deal just as well with any number in between, unless it is very peculiarly written; and we’ll
check specifically that it can deal with 0, 1, and 2 items.

Since we can’t test every combination even of these sample points, we need also to look for likely
dependencies intrinsic to the problem space. Independent variables needn’t be tested in multiple
combinations. For example, if the component deals correctly with a purchase order total from £0 up to
£1000 with one or two items on the order, it will probably deal with any total for other numbers of
items.

Pre- and Post-conditions
We favor writing pre/post-conditions for use-cases precisely because they state exactly what is to be
achieved, rather than how. They can be translated straight to test monitors.

Each post-condition comes paired with a precondition; the latter states the range of applicability of the
former. To take a simple example:

use-case calculate total price of order
pre count of items on order > 0
post total price := sum of item.product.price

This tells us what is achieved in the case where the precondition is true.

What does it say about any cases where the precondition is not true?

Alan Cameron Wills UML meets XP 10

Recall that when specifying requirements, it is valuable to be able to deal with partial views separately.
This specification tells us what one class of user expects of the system. It is important that it does not
prohibit other views. We might have another class of user role specifically interested in what happens
when there are no items on the order. Or we may have several variants of the system, all of which
conform to this fragment of specification, but which have different behaviors for the 0 case.

The proper interpretation is therefore that the precondition tells us when the postcondition is
applicable. In cases where the precondition is false, we simply do not know (just by looking at this
fragment) what to expect the system to do. Again, this is the ‘monotonic’ property so important for
pluggable and extensible object or component design.

The tests that correspond to pre/post pairs are therefore of the form:

if (<precondition = true>)
{
 stored-values := <@pre-variables used in postcondition>;
 <invoke method under test>;
 if (<postcondition(new values, stored-values) = false>)
 { raise an exception; }
}

else { <invoke method under test>; }

(An “@pre-variable” is a variables referred to in the postcondition in the form “variable@pre”,
referring to its value before the method is invoked. [Warmer])

There are a number of related constructs; see [Catalysis] for more details:

• Guards. A guard looks like a precondition, but no changes should happen if it is false.
• Model templates. A template is a chunk of model that can be parameterized and included in a

model (like a macro). Composing models with templates is not monotonic: preconditions can be
strengthened.

Attributes and Associations
Postconditions etc are, as we’ve seen, written in terms of the attributes and associations of the object
model. For example “The Guest is now the occupant of a room in the Hotel, that was previously
unoccupied” specifies a change in the occupant relation.

To be able to test this requirement, we therefore need to be able to access the occupant relation. But
wait a minute: requirements specifications say nothing about design – so there might not exist any such
relation, at least in ordinary database terms. The associations and attributes of a Requirements Model
tell us only about what information is kept within the system in some form. Looking at the type
diagram, it says that we should be able to ask the system what accommodation a particular Hotel has,
and the answer should be a collection of Rooms; and we should be able to ask about the occupant of
each Room, and the answer should be either a Person or Null.

So any design conforming to this specification should provide query operations corresponding to the
associations and attributes – if only so that we can test it.

The test of the usecase check guest into hotel according to this postcondition would be something like
this (where hotelsys is the component under test):

for all room in hotelsys.accommodation(hotel)
 previousOccupant[room] := hotelsys.occupant(room);
hotelsys.checkInGuest (guest, hotel);
if (not previousOccupant[hotelsys.roomWithOccupant(guest)] = null)
 raise exception;

Notice that we are asking the component hotelsys to perform each query and operation: we are not
assuming anything about operations the hotel, guest, etc objects can perform.

Private attributes
Not all attributes can be exposed. For example, we might model a User as
having an attribute password:String. The login use-case is specified as User

name: String
{private}
 password: String

Alan Cameron Wills UML meets XP 11

associating a Terminal with a User if the word typed at the terminal matches that in the User’s
password attribute.

The design should definitely not have a way of exposing the password at the system interface. So we
could not write the test to include something like:

system.login(user, myWord, terminal);
if (myWord = system.getPassword(user)
 and not system.isLoggedIn(user, terminal)) raise exception;

To indicate the restriction, we can mark the attribute private, prohibiting a design from implementing
getPassword. Again, recall that we have said nothing about how the attribute itself should be
implemented.

To test use-cases defined using a private attribute, we have to perform sequences of operations that
demonstrate behavior according to the specification. For example:

system.setpassword (user, “thing”);
system.logout (user);
system.login (user, “fiddle”, terminal);
if (system.isLoggedIn(user)) raise exception;
system.login (user, “thing”, terminal);
if (not system.isLoggedIn(user, terminal)) raise exception;

This kind of test is difficult to derive automatically from the Requirements Model.

Invariants
A typical invariant might be “The guests of a Hotel are the occupants of its accommodation”, or more
succinctly,

Hotel:: guests = accommodation.occupant

This is simple enough to translate to a test. It should be tested after any use-case that might affect any
of the associations mentioned.

(The rules are more complicated where there is callback between components.)

Nonfunctional (Quality) Requirements
In general, NFRs such as Loading, Latency, Usability, Security need specialist testing apparatus and
test procedures.

In all of these cases, UML has little to say about how to specify the requirement. The best way of
specifying it is in the form of test parameters to the relevant tools. However, the basic vocabulary
provided by the use case and type models can be used: for example, “check in guest should require less
than 5 keystrokes plus the reservation number or guest name”.

Iterative Design from Requirements Models
It’s essential that requirements are developed as a successive approximation, and the requirements are
passed to the developers very regularly. The division between analysts and designers is about skills, not
about sitting in separate rooms.

As in XP, designers should choose high-risk spikes to work on early, and should do all the good XP
stuff – Simplest Thing That Could Possibly Work, Write Tests First, One Change at a Time, each
change a Refactoring (no change to tests) or an Elaboration (extensions to tests, previous tests continue
to work).

Design tasks
(We don’t distinguish between programming and design here.)

The XP Planning Game is used to schedule design tasks [Beck]. Customers assign priorities to features
of the requirements; designers estimate how long they will take; together, they work out a schedule.
The schedule is reviewed every two weeks, to review progress and adjust it in the light of changed
understanding of requirements, architecture, and task estimates.

Alan Cameron Wills UML meets XP 12

In the XPRM version,

• Analysts represent the customers: either entirely, if the customer is diffuse; or sitting with the
customer in the style of an attorney at a police interview.

• The customer prioritizes Features. A Feature is some characteristic of the delivered system that can
be demonstrated to the customer, and tested by the Test Team. A feature can be:
− A use case. E.g. user can see list of products.
− A group of related use-cases. E.g. user can logon and logoff.
− A clause in a postcondition, or related set of such clauses. E.g. Each login is recorded, and the

manager can get a report of all logins.
− A business rule. E.g. no user is logged in from two terminals concurrently.
− A NFR/quality requirement. E.g. 1000 concurrent users can get decent performance.

Each Feature is documented in the project plan by reference to the parts of the Requirements Model
that it demands should be implemented.

• The designers define and estimate design Tasks. A Task is a unit of design or programming work
led by one designer, taking less than 5 designer-days. Design might include actual programming, or
it might be high-level design, or experimentation with existing systems. Each task has a
demonstrable goal though not necessarily demonstrable to the customer. Each Feature has a
principal task directed at fulfilling it; but there are ancillary and architectural tasks too.

A typical Feature might require some user interface design, an extra piece in the database, some
content, some business logic, and those efforts will have to be integrated. Each of these is a task
(probably because the different skills reside in different heads).

Tasks have prerequisites: other tasks that must be complete first. When planning, tasks may be
rearranged, but only insofar as the prerequisite graph allows.

Some tasks, called “architectural tasks” are prerequisite to a wide range of others, without being
attached to any Feature. These are typically about refactoring and infrastructure.

• The Test Team is also part of the planning game. They check that Features are well-defined enough
to be tested, and contribute testing tasks to the schedule: a Feature isn’t done until tested. (Testers
test features, rather than the results of tasks: unit tests are written by developers.)

As in XP, the performance of the schedule is constantly monitored.

Feature Feature Feature

Timebox

Task
Task

Task

Task

Task

Task

Task

Task
Task

Developers

Test

Test

Test

Test

Test

U/C clause Rule

NFR

NFR
Rule

U/C clause

U/C clause

Testers

Analysts

Alan Cameron Wills UML meets XP 13

Task something a developer will do:
high-level design or architecture;
or design & code a piece of software

name easy to refer to
pre tasks complete 1st

resources needed for this task
why feature(s) to which contributes
assigned who’s responsible
how short overview
estimate how many days
test ref to specific tests
priority wrt customer goals

Architectural Goal
A task that does not contribute directly to
a user-visible feature:

a refactoring of the design;
or the construction of a service

Visible Feature
something useful to users of the system
Typically a use-case, a group of use-cases, parts of one,
or a NFR (performance etc); or conformance to a business rule

Demonstrable
Goal

1 *

Design Goal
The output is a piece of high-level design
or architecture which can be used to define
tasks for future cycles.

Costing
Analysts should try to get a broad even degree of coverage of the whole range of the system within the
first few weeks of the project (in the RUP ‘elaboration’ stage). During this period, the designers should
choose an area to prototype. Using the usual XP techniques of estimating and monitoring programming
tasks, the team’s velocity is calibrated.

From the size of the prototype area in the Requirements Model, and time taken to implement it, an
estimation of the time to deliver other areas of the requirements can be obtained. Various spreadsheets
and tools like Optimise can help in ‘sizing’ the model.

This is very useful where fixed-price contracts are demanded.

Tool support
XPRM would benefit from tool support in these areas:

• An analysis tool that helps apply our model elaboration patterns and checks.
• Assistance in generating test cases from requirements models; and in tracing changes to the models

through to the test cases. Integrates results from a range of testing tools.
• A project management tool that supports the planning game with Features and Tasks; can link the

Feature definitions to parts of the Requirements Model; supports the rearrangement of Tasks in a
schedule; supports inspection and assignment of tasks over the project intranet.

Summary
eCommerce requires the rapid development of large systems. A lightweight process such as eXtreme
Programming (XP) is an essential for success. XP is a rigorous approach, mandating frequent
regression testing. However, it assumes small projects in which a single set of people perform both
analysis of the customer's requirements and the development of the solution. This is impractical in
many software shops, if only because a skilled analyst and a skilled developer don't always co-exist in
the same body.

We’ve looked at:

• integrating UML-based requirements without jeapordising XP's responsiveness to change;
• strong consistency and completeness checks on requirements models;
• the relationship between use-cases and incremental development tasks;
• maintaining a rigorous relationship between tests and the requirements model.

References
[Beck] eXtreme Programming eXplained, Kent Beck

[Catalysis] Objects, Components and Frameworks in UML, D D’Souza & AC Wills [A-W 98]

*
pre

Alan Cameron Wills UML meets XP 14

[Cockburn] Writing Effective Use Cases, Alistair Cockburn [A-W 2001]

[Jones] Systematic Software Development with VDM, Cliff Jones [PHI 1986]

[Kruchten] Rational Unified Process P Kruchten [A-W 2000]

[Morgan] Programming from Specifications, Carroll Morgan [PHI 1990]

[Warmer] Object Constraint Language, Jos Warmer and Anneke Kleppe [A-W 1998]

