
XP On A Large Project – A Developer’s View

 Amr Elssamadisy
 ThoughtWorks, Inc.
 651 West Washington Blvd.
 Suite 600
 Chicago, IL 60661 USA
 +1 312 373 8523
 Amr.Elssamadisy@thoughtworks.com

ABSTRACT
At ThoughtWorks we have adopted a modified version of
XP that has been tailored through our experiences to suit a
large project of over 35 developers and 15 analysts. This
project, a leasing application which we internally called
ATLAS, originally started 3 years ago with the standard
analysis and design front-loading of traditional
development projects. This paper is written from a
developer’s point of view, the experiences and the
techniques that were tried and either became habit because
they were useful, or never quite caught on. We will take
the different practices that are encouraged by XP in Kent
Beck’s Extreme Programming Explained [1], and give our
feedback on each practice. Then, in summarizing, we will
give a recommendation of what changes must be made to
the XP process to be able to utilize this methodology and
still produce quality code at a fast pace for a large project.

Keywords
Large project XP

1 INTRODUCTION
At ThoughtWorks we have been working with XP on a
large project for over 15 months. This project originally
started out 3 years ago with a huge requirements document
and several functional independent sub-teams. Starting in
Jan. of 2000 we decided to drastically change direction
with XP knowing that XP is NOT for large projects. We
needed to start delivering functionality to our client and
give them (and us) confidence by delivering a working
subset of the project and not just a prototype (we have over
25 developers on the team and about 15 analysts). This is
not to say that we did not have functionality ready, but each
team had its own scaffolded piece of code that it could run,
but there was no complete application that could be run. To
make the long story short - the client needed to see
something and we had yet to show them some real
functionality. Iteration 1 was a great success because we
delivered to the client a working subset of the application
that made sense in the real world. We built on this initial
success - with developers signing up for different tasks
every time so that our Asset team and AR team and GUI
team started to meld together. There were definitely

growing pains - some egos clashing between analysts and
developers but we were able to get over these hurdles.

Everything was rosy – we were delivering functionality at
blazing speeds - but as time wore on and the project kept
going - there were some things that weren't working as
expected. This is what this paper will be about - what we
REALLY learned after the honeymoon. How we
ACTUALLY maintained a fifty-man project over a year
and a half through development and successful (and
sometimes not so successful) iteration releases. The pains
we went through, the work we did and are continuing to do,
and finally what we have learned and what we will do
differently on our next projects.

We will first present our initial starting setup – how we
applied XP fifteen months ago, and then present our current
application of XP. That said, the rest of the paper will
discuss the reasons we changed our technique changed.
That is, we will analyze the natural selection process that
killed off many of our bad ideas or molded them into more
effective ideas that help in running a large project. We will
then summarize and give a discreet recommendation of
how to proceed with XP in a large project.

2 ELEMENTS OF XP WITH A LARGE PROJECT
Ok, now we get to the good stuff. The team of developers
and analysts consists of approximately 35 developers, 15
business analysts, and about 10 QA. The developers rely
on the analysts to be the customers of the project. There is
a real customer however, and the analysts work with them
to collectively make customer decisions. The table below
shows the elements of XP as discussed in [1] and gives a
brief description of how that aspect was being used at
different stages in the project. We will use this table to
analyze our team’s natural selection of practices and how
textbook XP evolved on a large project to support a fifty-
person team that has taken a project to completion.

Pl
an

ni
ng

R

el
ea

se

C
yc

le

M
et

ap
ho

r
D

es
ig

n
Si

m
pl

ic
ity

Te

st
in

g
R

ef
ac

to
rin

g

1/
20

00

La
rg

e
ite

ra
tio

n
pl

an
ni

ng

m
ee

tin
gs

.
Fu

ll
te

am
 o

f
de

ve
lo

pe
rs

 a
nd

 a
na

ly
st

s m
et

 fo
r

an
 e

nt
ire

 d
ay

 to
 d

is
cu

ss
 n

ew

st
or

y
ca

rd
s a

nd
 e

st
im

at
e.

 M
os

t
de

ve
lo

pe
rs

 si
gn

 u
p

fo
r n

ew

fu
nc

tio
na

lit
y.

1
m

on
th

N

on
e

Tr
an

si
tio

ni
ng

 w
ith

 a
n

ex
is

tin
g

co
de

 b
as

e.
 E

xi
st

in
g

co
de

 st
ill

co

m
pl

ex
, b

ut
 n

ew
 c

od
e

as

si
m

pl
e

as
 p

os
si

bl
e.

 T
hi

s p
ha

se

in
cl

ud
ed

 th
ro

w
in

g
ou

t a
nd

re

w
rit

in
g

ex
is

tin
g

fu
nc

tio
na

lit
y

th
at

 ‘s
om

ed
ay

 m
ig

ht
 b

e
us

ed
’.

U
ni

t t
es

ts
 st

ar
te

d
w

ith

so
m

e
of

 th
e

ne
w

 c
od

e.

Pu
sh

 b
ei

ng
 m

ad
e

to

ha
ve

 a
 la

rg
e

te
st

 b
as

e.

Q
A

 d
oe

s a
ll

fu
nc

tio
na

l
te

st
s a

nd
 h

as
 th

e
au

th
or

ity
 to

 p
as

s/
fa

il
a

st
or

y
ca

rd
.

R
ef

ac
to

rin
g

do
ne

 a
s

ne
ed

ed
 w

he
n

to
uc

hi
ng

 o
ld

co

de
.

7/
20

00

Sa
m

e
as

 1
/2

00
0

–
bu

t d
ef

in
ite

ly

fe
el

s v
er

y
in

ef
fic

ie
nt

.
M

os
t

at
te

nd
ee

s n
ot

 c
on

ce
nt

ra
tin

g
or

pa

rti
ci

pa
tin

g.
 L

on
g

dr
aw

n-
ou

t
di

sc
us

si
on

s.
 5

0-
m

an
 m

ee
tin

g
is

 o
ve

rw
he

lm
in

g.

1
m

on
th

N

on
e

D
es

ig
ns

 c
on

tin
ui

ng
 to

 b
e

as

si
m

pl
e

as
 p

os
si

bl
e.

R

ef
ac

to
rin

gs
 o

f e
xi

st
in

g
de

si
gn

s
be

in
g

do
ne

.
C

od
e

re
vi

ew
s

be
in

g
do

ne
 to

 c
ol

le
ct

iv
el

y
di

sc
us

s n
ew

 d
es

ig
ns

 so
 th

at
 th

e
w

ho
le

 te
am

 is
 fa

m
ili

ar
 w

ith

co
di

ng
/d

es
ig

n
tre

nd
s.

B
et

te
r u

ni
t t

es
t

co
ve

ra
ge

 b
ut

 st
ill

 n
ot

fu

ll
co

ve
ra

ge
.

C
od

ed

Fu
nc

tio
na

l T
es

ts

(C
FT

s)
 to

 h
el

p
te

st

co
ve

ra
ge

.

M
os

t d
ev

el
op

er
s a

re

he
ad

s-
do

w
n

in
 d

el
iv

er
in

g
fu

nc
tio

na
lit

y,
 v

er
y

lit
tle

re

fa
ct

or
in

g
do

ne
.

C
od

e
ba

se
 g

et
tin

g
w

or
se

 a
t e

nd
-

of
-it

er
at

io
n

cr
un

ch
 to

de

liv
er

 c
ar

ds
 to

 Q
A

1/
20

01

Tr
y

m
ak

in
g

ite
ra

tio
n

pl
an

ni
ng

m

ee
tin

gs
 fa

st
er

 –
 b

y
do

in
g

m
or

e
pr

ep
 w

or
k

w
ith

 s
m

al
l

gr
ou

ps
 o

f d
ev

el
op

er
s b

ef
or

e
th

e
ac

tu
al

 m
ee

tin
gs

.

2
w

ee
ks

N

on
e

M
os

t o
f t

he
 d

es
ig

ns
 b

ui
lt

on

ex
is

tin
g

de
si

gn
s –

 st
an

da
rd

s
ke

pt
, c

od
e

re
vi

ew
s t

ap
er

ed
 o

ff

si
nc

e
ne

w
 ty

pe
s o

f
de

si
gn

s/
re

fa
ct

or
in

gs
 n

ot
 b

ei
ng

do

ne
.

A
tte

m
pt

ed
 to

 g
et

 ri
d

oi
f C

FT
s a

nd
 re

pl
ac

e
w

ith
 a

 sc
re

en
-s

cr
ap

er

an
d

fa
ile

d
- w

en
t b

ac
k

to
 C

FT
s.

 N
ew

 u
ni

t
te

st
s b

ei
ng

 a
dd

ed
 b

ut

co
ve

ra
ge

 st
ill

 la
ck

in
g.

Q

A
 st

ar
ts

 to
 a

ut
om

at
e

fu
nc

tio
na

l t
es

ts
 w

ith

sc
re

en
 sc

ra
pe

r.

R
ef

ac
to

rin
gs

 b
ei

ng
 d

on
e

m
uc

h
m

or
e

of
te

n
as

 c
od

e
st

ar
ts

 to
 sp

ag
he

tti
 in

 so
m

e
pa

rts
 o

f t
he

 a
pp

.
M

aj
or

cl

ea
n-

up
s b

ei
ng

 d
on

e
be

ca
us

e
im

pl
em

en
te

d
si

m
pl

y
an

d
th

en
 it

er
at

io
n

de
ad

lin
es

 c
au

se
d

to
 c

od
e

to
 g

ro
w

 w
ith

ou
t t

he

im
po

rta
nt

 re
fa

ct
or

in
gs

be

in
g

do
ne

.

6/
20

01

Se
ve

ra
l m

ee
tin

gs
 fo

r c
ar

ds
/s

et
s

of
 re

la
te

d
ca

rd
s b

et
w

ee
n

de
ve

lo
pe

rs
 in

te
re

st
ed

 in
 o

r
kn

ow
le

dg
ea

bl
e

ab
ou

t t
he

fu

nc
tio

na
lit

y
an

d
an

al
ys

ts
 w

ho

ar
e

re
sp

on
si

bl
e

fo
r t

he
 st

or
y

ca
rd

.

2
w

ee
ks

N

on
e

La
rg

e
pa

rt
of

 th
e

te
am

 a
nd

 a
ll

of
 Q

A
 w

or
ki

ng
 o

n
de

liv
er

in
g

ve
rs

io
n

1.
0

to
 th

e
cu

st
om

er
.

C
od

e
ba

se
 sp

lit
 a

nd
 n

ew

fu
nc

tio
na

lit
y

be
in

g
ad

de
d

w
ith

ou
t Q

A
.

M
or

e
re

lia
nc

e
on

un

it
te

st
s.

Te
st

 c
ov

er
ag

e
se

em
s t

o
ha

ve
 st

ab
le

d
at

 a
 le

ve
l

th
at

 is
 la

ck
in

g.
 Q

A

ha
s b

ee
n

ou
t o

f t
he

lo

op
 w

ith
 n

ew

fu
nc

tio
na

lit
y

be
ca

us
e

fo
cu

se
d

en
tir

el
y

on

ve
rs

io
n

1.
0

de
liv

er
y.

R
ef

ac
to

rin
gs

 o
n

th
e

re
le

as
e

ar
e

m
in

im
al

, w
hi

le

on
 th

e
co

nt
in

ui
ng

 p
ro

du
ct

br

an
ch

 d
ev

el
op

er
s a

re

re
fa

ct
or

in
g

m
or

e
co

ns
ci

en
tio

us
ly

 a
fte

r
be

in
g

fo
rc

ed
 to

 d
o

la
rg

er

m
or

e
pa

in
fu

l r
ef

ac
to

rin
gs

ea

rli
er

 in
 th

e
ye

ar
.

3

Pa
ir

pr
og

ra
m

m
in

g
C

ol
le

ct
iv

e
O

w
ne

rs
hi

p
C

on
tin

uo
us

In

te
gr

at
io

n
40

 h
ou

r w
ee

k
O

ns
ite

C

us
to

m
er

C

od
in

g
St

an
da

rd
s

1/
20

00

Si
nc

e
w

e
ha

d
m

ad
e

a
de

ci
si

on
 w

ith

X
P,

 th
e

en
tir

e
te

am
 re

ad
 [1

] a
nd

w

er
e

en
co

ur
ag

ed
 to

 p
ai

r-
pr

og
ra

m
.

Ev
er

yo
ne

 tr
ie

d
it

an
d

it
ca

ug
ht

 o
n

w
ith

 m
os

t o
f t

he
 te

am
.

In
 th

e
in

iti
al

 p
ha

se
 w

e
w

er
e

m
ov

in
g

fr
om

 fu
nc

tio
n-

or
ie

nt
ed

 g
ro

up
s,

so
 w

e
di

d
no

t f
ee

l c
ol

le
ct

iv
e

ow
ne

r-
sh

ip
, b

ut
 a

ls
o

di
d

no
t f

ee
l

pr
ot

ec
tiv

e
of

 o
ur

 c
od

e.

O
nl

in
e

fr
om

ite

ra
tio

n
1.

Se

e
[2

].

Th
is

 w
as

 a
 p

ro
of

 o
f

co
nc

ep
t w

or
k

–
an

d
w

e
w

an
te

d
th

e
cl

ie
nt

 o
n-

bo
ar

d.
 S

o
a

lo
t o

f
ex

tra
 h

ou
rs

 w
er

e
pu

t i
n

to
 m

ee
t t

he
 d

ea
dl

in
e

B
us

in
es

s
an

al
ys

ts
 a

re
 th

e
on

-s
ite

cu

st
om

er
.

15

an
al

ys
ts

 o
n

th
e

te
am

.
Th

e
ac

tu
al

 c
lie

nt

w
as

 o
ff

si
te

 a
nd

th

e
an

al
ys

ts

co
m

m
un

ic
at

ed

w
ith

 th
em

.

N
on

e
ot

he
r t

ha
n

no
rm

al

Ja
va

 sy
nt

ax
.

7/
20

00

Pa
ir

pr
og

ra
m

m
in

g
st

ill
 st

ro
ng

,
de

ve
lo

pe
rs

 a
re

 p
ai

r p
ro

gr
am

m
in

g
fo

r
ne

w
 fu

nc
tio

na
lit

y,
 b

ut
 b

ug
s a

nd

m
ai

nt
en

an
ce

 h
av

e
de

ve
lo

pe
rs

w

or
ki

ng
 so

lo
.

 S
om

e
pr

og
ra

m
m

er
s

st
op

 to
 p

ai
r p

ro
gr

am
 a

ll
to

ge
th

er
.

O
w

ne
rs

hi
p

of
 c

od
e

is

co
m

pl
et

el
y

di
lu

te
d

as
 m

or
e

de
ve

lo
pe

rs
 to

uc
h

di
ff

er
en

t
pi

ec
es

 o
f t

he
 a

pp
.

V
er

y
go

od
 c

om
m

un
ic

at
io

n
ta

ke
s

pl
ac

e
vi

a
in

fo
rm

al
 c

ha
ts

,
co

de
-r

ev
ie

w
s,

an
d

sh
or

t
St

an
d-

up
 m

ee
tin

gs
.

C
FT

s a
ls

o
ad

de
d

to
 th

e
bu

ild
 p

ro
ce

ss

C
yc

lic
 h

ou
rs

 h
itt

in
g

50

an
d

60
 h

ou
r w

ee
ks

 a
t

th
e

en
d

of
 e

ac
h

ite

ra
tio

n
to

 tr
y

to
 p

as
s

th
e

st
or

y
ca

rd
.

Sa
m

e
as

 a
bo

ve

B
i-w

ee
kl

y
co

de
 re

vi
ew

s
gi

ve
 d

ev
el

op
er

s a
 c

ha
nc

e
to

 d
is

cu
ss

 w
ay

s t
ha

t
di

ffe
re

nt
 su

bs
ys

te
m

s a
re

be

in
g

im
pl

em
en

te
d

w
he

re

w
e

ag
re

e
on

 in
fo

rm
al

w

ay
s o

f c
od

in
g

si
m

ila
r

pa
rts

 o
f t

he
 sy

st
em

.

1/
20

01

Pa
ir

pr
og

ra
m

m
in

g
de

fin
ite

ly
 le

ss
 a

s
m

or
e

of
 th

e
co

di
ng

 is
 st

ra
ig

ht
-

fo
rw

ar
d

or
 b

ec
au

se
 a

 d
ev

el
op

er
 is

re

fa
ct

or
in

g
a

pi
ec

e
of

 c
od

e.

St
an

d
up

 m
ee

tin
gs

 a
re

dr

op
pe

d
as

 b
ei

ng
 in

ef
fic

ie
nt

,
bu

t c
od

e
ow

ne
r-

sh
ip

 re
m

ai
ns

di

lu
te

d.
 D

ev
el

op
er

s s
ta

rt
sp

ec
ia

liz
in

g
in

 p
ar

ts
 o

f t
he

sy

st
em

 a
ga

in
.

St
ab

le
 –

sa

m
e

as

ab
ov

e.

W
ith

 2
 w

ee
k

ite
ra

tio
ns

,
de

ve
lo

pe
r e

st
im

at
es

be

co
m

e
m

or
e

ac
cu

ra
te

an

d
cl

os
er

 to
 4

0
ho

ur

w
ee

k.
.

Sa
m

e
as

 a
bo

ve

C
od

e
re

vi
ew

s t
ap

er
ed

 o
ff,

sa

tu
ra

tio
n

of

de
si

gn
/c

od
in

g
st

an
da

rd
s.

6/
20

01

D
ef

in
ite

 tr
en

d
w

ith
 a

lm
os

t a
ll

ne
w

fu

nc
tio

na
lit

y
be

in
g

pa
ir-

pr
og

ra
m

m
ed

 a
nd

 a
lm

os
t a

ll
de

bu
gg

in
g/

m
ai

nt
en

an
ce

 d
on

e
by

 a

si
ng

le
 d

ev
el

op
er

.

W
ith

 sp
ec

ia
liz

at
io

n,
 th

er
e

is

a
tre

nd
 w

ith
 a

 sm
al

l s
et

 o
f

de
ve

lo
pe

rs
 k

no
w

in
g

m
or

e
ab

ou
t d

iff
er

en
t p

ar
ts

 o
f t

he

co
de

 –
 so

 w
e

te
nd

 to
 h

av
e

th
em

 b
e

m
or

e
ac

tiv
e

in
 th

e
co

nt
in

ui
ng

 d
es

ig
ns

, b
ut

 st
ill

co

m
m

un
al

 o
w

ne
rs

hi
p

of
 th

e
co

de
.

St
ab

le
 –

sa

m
e

as

ab
ov

e.

Sa
m

e
as

 a
bo

ve
.

Sa
m

e
as

 a
bo

ve
.

Sa
m

e
as

 a
bo

ve
.

After examining these tables we notice that almost all the
practices have evolved over 18 months. Some have
stabilized – since we see many ‘same as above’ in columns
like continuous integration and testing.

3 PAIR PROGRAMMING
First of all, lets discuss our flavor of pair programming.
We mostly have 2 developers working on the same story
card for an entire iteration (or sometimes several iterations
on related cards). With a large project, developers need
more focus – since start-up time on a new area of the code
is not negligible. Good communication between
developers and iteration planning meetings keep everyone
‘in the big picture’ about who is doing what. This allows
the classic textbook pair programming where developer A
goes to developer B and ask him to pair to solve a problem
he is working on.

Pair programming is good - but not realistic all the time.
The most common reason a developer does not pair
program is if he is working on bugs or maintenance. In this
case we have found there is little added value having a set
of eyes debug code. Also, there are many tasks which are
‘just like the task we did last iteration.’ In that case, since
the solution has already been found (usually by a pair of
developers), there is also no added value to pairing up.

Finally, developers have different personalities - some
people just need a break from pair programming. Some are
really just more talented than others and are slowed down
by it - and it becomes obvious that it becomes a burden for
these people.

4 UNIT TESTS AND INTEGRATED BUILDS
Unit tests and integrated builds - are ABSOLUTLY
MANDITORY - we would be stopped in our tracks and not
able to deliver one piece of code if we could not rely on
tests. As the application gets larger and larger it becomes
almost impossible to add new code or refactor existing
code without going through tests. We currently have an
integrated build [2] where a new build and tests are run
when new code is checked into our repository. The details
of every build, tests broken, and people responsible are
immediately available on an internal web page that
developers can access to see the current state of the build
and business analysts and QA can access to retrieve the
latest build to test the functionality they are working with.

5 GROUP OWNERSHIP AND INFORMATION
SHARING

Dissemination of information through communication and
rotating through different parts of code is important to keep
such a large project from fragmenting into several
independent pieces that make inaccurate assumptions about
the system as a whole1. Communication is a must - but

1 It is accepted in developer circles that it is a GOOD thing
for modules to be completely independent and only assume
the interface of other modules. This is true of

there is no way you can really force a quiet person to talk -
so we tried in our bi-weekly stand up meetings for
everyone to say something so that the quiet people say what
they need. In the end we dropped the meetings because
most developers felt it was a waste of time and were talking
informally about all issues. This is one of this team’s
strongest point – it almost as if we are one large communal
developer – there is a definite synergy akin to that in pair
programming when an entire team of developers
communicate well.

As for the rotation and doing a little of everything - we
started out that way - but in the end, when you have
deadlines - we find ourselves signing up for things we
already know. The inherent start up time to come up to
speed on a complex piece of code is too much of a time
sink. In the end moderation is best - during crunch time
you do what you know or are familiar with, at other times -
when you are doing bugs - you can explore - or sign up for
one task you know and one that you don’t. So what is now
the norm is that a developer will sign up consistently (for a
few iterations) for related cards and then move on to
another part of the system. Signing up for cards in several
parts of the system in one iteration is definitely out of
fashion these days.

Code is definitely worse than we started. But is this
because the project is larger? Or is it because many people
touch the code are first timers2? A little of both - but at the
same time we don't get islands of code that do not have
anything to do with the rest of the application. There needs
to be a constant cleaning up of code. Which brings us to the
next point of refactoring.

6 REFACTORING
Refactoring is a definite need on large projects using XP to
make up for the inconsistent code. Even with people who
are familiar with the most of the app – or large parts of it –
some refactorings just take too long and are always getting
pushed back. Time out needs to be allotted for refactoring
– this is something the project managers have to realize –
and in our case they did. We were able to take the time
needed to refactor major parts of our code..

7 SHORT ITERATIONS
Iterations and deadlines are mandatory – but the length has
always been an issue. We originally had longer iterations
– one-months iterations– and this caused an end of the
month squeeze and bad code being checked in because we
had such large cards – and inevitably we had problems
estimating. We had to learn to accept cards not making it

PROGRAMMING, but not true of developers. Developers
need to be interdependent – to know what is going on in the
rest of the app, so that the independent modules they write
have a consistent business foundation.
2 Not first-time developers, but new comer’s to the area of
functionality.

 5

(although it is still hard on developers – this one included –
to miss a deadline). We are now doing two-week iterations
that have made our estimations closer to target and we are
also allowing cards to fall through. On the other hand, the
two weeks seem to be over really fast – it is harder to take
on a large refactoring at the beginning of an iteration so a
new piece of functionality can be added. So which should
it be 1-month or 2-week iterations or something completely
different? This is agile development right? Then we
should be agile with these rules – allow some issues to
cross iterations. Lately we have had some issues that we
knew could not be effectively split into iteration
deliverables and allowed up to 5 two-week iterations for
completion. To offset this large period we continued to
regularly revisit the progress at the end of every iteration.

8 SUMMARY
So – after 18 months on a 50 man team what are our
recommendations and lessons learned? Let’s list them:

1. Have an iteration planning meeting at the
beginning of each iteration where the customer
and developers split up in groups all day to discuss
the latest story cards and estimate them. At the
end of the day regroup and present your
estimations and findings and then have developer
signup. This will keep the whole team in-the-
know about what is happening without burdening
everyone with an extremely tedious and long
meeting.

2. Keep releases as small as possible – 2 weeks
works for us, but at the same time be flexible
when larger pieces need to be done over several
iterations. Allow signup for a multiple iteration
card but always review progress every iteration.

3. Write as many unit tests as you can – that is self-
evident. You should also have an automated suite
of functional tests to keep the test coverage at an
acceptable rate. A QA team cannot be replaced –
no matter how many tests developers write – we
are flawed in our biased understanding of how the
system works or should work.

4. Simple designs have helped us release a working
product to the customer consistently. Frequent
design meetings (lunch is the best way to gather
the development team) are very helpful during
stages of intense new functionality being added.
This will keep from having parallel and maybe
incompatible solutions to be implemented in
different parts of the application.

5. Refactoring is the only way to be able to have
simple designs as stated in (5). Refactoring of
designs is just as important as refactoring of the
code. It will always be tempting not to refactor
and to just patch a solution, but if it is patched too

much the team will be forced to make major
refactorings later on.

6. Pair programming should be religiously followed
when new functionality is added, and should be
skipped when fixing bugs or doing repetitive tasks
that have already been ‘solved’ before by a pair of
developers.

7. Collective ownership goes hand in hand with
communication. The team must figure out a way
to communicate effectively. It may be no more
than just informal discussions which worked best
for our team, otherwise regular stand-up meetings
that last for 10-15 minutes are a good way to
disseminate information.

8. With a large project a group of individuals are
needed to be the customer – to generate enough
work for the large number of developers. This is
strictly dependant on the where the business
knowledge is.

9. Coding standards have been very informal and this
has not been detrimental to our progress. What is
more important is communication of ongoing
work through presentations. Code is not enough
of documentation, developers need to see the big
picture also – and that cannot be relayed through
code.

We also found that the following things didn’t work for us:

1. Bi-weekly stand-up meetings were not efficient.
Opted for informal communication with once-a-
month iteration team meetings.

2. Full team meetings during the iteration planning
meeting did not work. A day of small group
meetings with 30-45 minute review at the end of
the day of the cards worked better.

3. 1 month long iterations were too long and were
detrimental to code quality. Moved to 2-week
iterations which is easier to track and makes
estimations more accurate.

4. (3) does not work all the time for larger chunks of
the code – especially if refactoring a large part of
the system. So exceptions are made where one
card may span several iterations.

5. Metaphors are unrealistic with large projects.
They are just too complex. Period.

6. A 40 hour week has never been an issue for us. 40
hours is the minimum and we have not been
adversely affected by working more than 40 hours,
but then again, we are not pair programming
100% of the time.

 6

That’s it. XP, or our evolved version of it, has done
wonders for us as a team. We are in the process of
delivering a very large and complex application on time
and have built some very serious experience as developers
that will enable us to tackle just about any project that
comes along.

REFERENCES
1. Beck, K. Extreme Programming Explained:

Embrace Change. Addison-Wesley, 1999; ISBN
201-61641-6

2. Fowler, M. and Foemmel, M.; Continuous
Integration;
http://www.martinfowler.com/articles/continuousI
ntegration.html

	ABSTRACT
	Keywords

	INTRODUCTION
	ELEMENTS OF XP WITH A LARGE PROJECT
	PAIR PROGRAMMING
	UNIT TESTS AND INTEGRATED BUILDS
	GROUP OWNERSHIP AND INFORMATION SHARING
	REFACTORING
	SHORT ITERATIONS
	SUMMARY
	REFERENCES

