
Use Cases in Object-Oriented Software Development

REFERENCE : AMIDST/WP2/N003/V02
DATE OF ISSUE : February 5, 1999
ACCESS RIGHTS : public
STATUS : final
EDITOR : Klaas van den Berg
AUTHOR[S] : Mehmet Aksit, Klaas van den Berg,

& Pim van den Broek

SYNOPSIS

Use cases and their role in the software development process are de-
scribed. The semantics of the uses relation and the extends relation
between use cases are explained with control flowgraphs.

USE CASES IN OBJECT-ORIENTED SOFTWARE DEVELOPMENT

ii

Document History

DATE VERSION MODIFICATION

November 26, 1998 01 Initial draft

February 5, 1999 02 Final draft

Abstract

In this document we describe use cases and its role in the software development process.
There is no precise semantics of use cases. Use case descriptions can be formalized with
control flowgraphs. Based on this formalization, the use of the standard technique of se-
quence charts can be improved, in particular for the uses relation and the extend relation be-
tween use cases.

AMIDST/WP2/N003

iii

Table of Contents

1. INTRODUCTION... 1
1.1 USE CASES 1

1.1.1 Use Case Relations 1
1.1.2 Use Case Descriptions 3

1.2 USE CASES IN THE SOFTWARE DEVELOPMENT PROCESS 3

2. CONTROL-FLOW IN USE CASES... 4
2.1 CONTROL-FLOW GRAPHS 4

2.1.1 Control-flow with common use cases 5
2.1.2 Control-flow with variant use cases 5
2.1.3 Control-flow with component uses cases 6
2.1.4 Control-flow with specialised use cases 7
2.1.5 Control-flow with ordered use cases 7

2.2 INTERLEAVING OF USE CASES WITH USES-RELATIONSHIP 8
2.3 CONTROL-FLOW IN SEQUENCE DIAGRAMS 10

2.3.1 Extension points in sequence diagrams 11
2.3.2 Activity diagrams and sequence diagrams 12
2.3.3 Tools and Testing 12

2.4 GUIDELINES 13

3. CONCLUSION ... 15

REFERENCES... 16

APPENDIX... 18

AMIDST/WP2/N003

1

1. Introduction

Use cases, as introduced by Jacobson (Jacobson et al., 1992), are frequently utilised in the
requirements elicitation phase of software development. They are also part of the Unified
Modeling Language UML (Rational, 1997; Booch, Rumbaugh & Jacobson, 1999). The role
of use cases in software reuse is discussed in Jacobson et al., 1997. There is a strong debate
about the use of use cases (Berard, 1996; Cockburn & Fowler, 1998; Henderson-Sellers,
Simons & Younessi, 1998, Appendix E; Simons, 1999). One of the critical points relates to
the semantics of use cases.

The control-flow semantics of use case diagrams – and of the relationships between use cases
- is not very well defined (Bergner et al., 1998; Övergaard & Palmkvist, 1998). In this docu-
ment, the control-flow semantics of use cases is described in terms of the well-established
theory of control-flow graphs (Fenton & Whitty, 1986). There are other approaches to for-
malizing use cases (Hsia et al., 1994; Regnell et al., 1996), but these do not address control
flow of use case relations.

First, use case terminology is discussed and control-flow graphs are introduced briefly. Sub-
sequently the mapping of use case diagrams and their relations onto control-flow graphs is
described. Then the flow of control in sequence diagrams with branching is discussed. In the
conclusion, guidelines are given for the descriptions of use cases with extends-relations and
uses-relations based on the given semantics.

1.1 Use Cases

A use case (class) is a specification of actions, including variants, which a system (or other
entity) can perform, interacting with an actor of the system. A use case is a specific way of
using the system by performing some part of the functionality. A use case instance (also
called a scenario) is a specific sequence of actions as specified in a use case carried out under
certain conditions. A use case model or diagram contains a collection of related use cases
(Jacobson et al., 1992; Rational, 1997).

1.1.1 Use Case Relations

In Table 1 we list the terminology on uses cases and their relationships as being described for
Objectory♣ by Jacobson (Jacobson et al., 1992), for SOMA by Graham (Graham, 1995), in
the OPEN Modeling Language (OML) reference manual by Firesmith (Firesmith et al., 1997)
and the Unified Modeling Language (UML) semantics document (Rational, 1997).

♣ Objectory: Object Factory for Software Development; SOMA: Semantic Object Modelling Approach; OPEN:
Object-oriented Process, Environment and Notation

USE CASES IN OBJECT-ORIENTED SOFTWARE DEVELOPMENT

2

Objectory
Jacobson

SOMA
Graham

OML
Firesmith

UML
Rational

1 uses invokes uses

2 extends usage extends

3 composition invokes refines

4 specialisation

5 precedes

Table 1. Terminology for five kinds of use cases and their relationships

concrete use case

abstract use case 1 abstract use case 2

uses uses

using use case

used use case 1 used use case 2

<<uses>> <<uses>>

script

side script 1 side script 2

subscript 1 subscript 2

script

basic use case

extension use case 1 extension use case 2

extends extends

va
ri

an
t

co
m

m
on

co
m

po
ne

nt
sp

ec
ia

li
se

d
or

de
re

d

use case

extending use case 1 extending use case 2

<<extends>> <<extends>>

script

component
script 1

component
script 2

superordinate use case

subordinate
use case 1

subordinate
use case 2

client scenario class

server scenario
class 1

server scenario
class 2

invokes invokes

client scenario class

server scenario
class 1

server scenario
class 2

invokes invokes

client scenario class

server
scenario class b

server
scenario class a

precedes precedes

AMIDST/WP2/N003

3

In the overview in Table 1 we distinguish the following five kinds of use cases:

1. Common use cases. Common parts of use cases are factored out so that these can be
(re)used by other use cases without repeating the description.

2. Variant use cases. In variant use cases, alternatives to the normal use case behaviour are
captured. They are also used for exceptions.

3. Component uses cases. In component use cases, parts of use cases are further refined
leading to a hierarchical decomposition of use cases.

4. Specialised use cases. Use cases may classified in more specialised versions.

5. Ordered use cases. Ordered use cases deal with situations where the completion of one
use case is required before the following use case can be executed.

In OML (Firesmith et al., 1997), the invokes-relationship is applied -in examples- to both
common use cases and component use cases. Deviant in this table is the description of Gra-
ham (Graham, 1995) of the usage-relation between use cases (in his terminology scripts) and
side-scripts. The side-scripts handle exceptions that require a redirection of the flow of con-
trol. A similar description is found in Jacobson (Jacobson et al., 1992) and UML (Rational,
1997) for the extends-relation. The subscripts - which handle specialised cases – aim at a
specialisation hierarchy as with inheritance.

1.1.2 Use Case Descriptions

Use cases can be described informally in natural language, semi-formal in structured natural
language (SVDPI-sentences Subject-Verb-DirectObject - [Preposition - IndirectObject]) or in
pseudocode, or with formal models, such as activity diagrams or sequence diagrams. Usually,
one starts with an informal description, and gradually one proceeds to more formal models. In
the following sections we will use these formal models for the description of use cases.

1.2 Use Cases in the Software Development Process

Use cases are used differently by current object-oriented methodologies. At first, in the Ob-
ject Modeling Technique (OMT) there are no use cases (Rumbaugh et al., 1991). Later,
Rumbaugh (Rumbaugh, 1996) extended OMT with the use of use cases are mainly to capture
the requirements of a software system from a user-centered viewpoint. Uses cases are com-
bined with domain analysis.

Object-Oriented Software Engineering (OOSE: Jacobson et al., 1992) introduces use cases as
a core concept in this methodology. In fact, use cases have their impact on all models in the
software development process. In the OOSE terminology this is expressed as follows
(Jacobson et al., 1992: p. 132). The use case model is: expressed in terms of the domain ob-
ject model, it is structured by the analysis model, it is realized by the design model, it is im-
plemented by the implementation model, and it is tested by the testing model. This approach
to use cases has been incorporated in the Objectory CASE-tool. Later, Jacobson joined the
Rational company, and use cases are now a central part of the Unified Process (Jacobson,
Booch & Rumbaugh, 1999) and are also one of the modeling techniques in the Unified Mod-
eling Language (UML) (Booch, Rumbaugh & Jacobson, 1999).

USE CASES IN OBJECT-ORIENTED SOFTWARE DEVELOPMENT

4

2. Control-flow in use cases

In a use case instance, some path – i.e. a contiguous sequence of interactions (Firesmith et al.,
1997) - in the use case is taken. An actor requires some functionality of the system; this re-
quest provides the entry point of the use case. By performing a sequence of related actions
this functionality is supplied by the system, either in a normal course of actions, in some
variant course of actions, or by handling exceptions. After this, the exit point of the use case
is reached.

The flow of control within each use case can be derived from interaction diagrams, i.e. the
sequence diagram or the corresponding collaboration diagram. These diagrams can be
mapped onto flowgraphs. A method m() sent to object Y is represented by action Y.m(). The
sequence of messages is represented by the arcs between the actions in the flowgraphs. The
entry point of the use case is mapped onto the start node of the flowgraph and the exit point
onto the stop node.

2.1 Control-flow graphs

A control-flow graph (Fenton & Whitty, 1986) (in short flowgraph) is a directed graph. The
nodes in the graph represent actions (activity, method execution) and the arcs indicate the
flow of control from one action to another. A flowgraph has two special nodes: the start node
and the stop node. The stop node has no outgoing arcs and every node in a flowgraph lies on
some path from the start node to the stop node (the one-entry one-exit property). A node with
one outgoing arc is called an action node. A node with two or more outgoing arcs is called a
branch node.

Elementary flowgraphs (primes) are selection with IF(c,A), IF(c,A,B), CASE(q,A,B,…) and
iteration with WHILE(c,A) and REPEAT(A,c).

The sequence-operation of two flowgraphs A and B, denoted by A;B, is obtained by joining
the stop node of A with the start node of B.

The nesting-operation of flowgraph B onto action node x in A, denoted by A(B on x), is ob-
tained by replacing the outgoing arc of x in A by B. Often, the node x is not specified and
nesting is denoted by A(B).

Flowgraphs that can be fully decomposed with sequencing and nesting into elementary flow-
graphs are called structured flowgraphs. A large number of metrics has been defined to cap-
ture properties of flowgraphs, such as complexity, depth of nesting and testability (Fenton &
Pfleeger, 1996).

Next, we discuss the control-flow semantics of use cases and each of the relationships be-
tween use cases in terms of control-flow graphs. From now on we use – as far as possible -
the UML-notation and terminology for the description of uses cases and their relations.

AMIDST/WP2/N003

5

2.1.1 Control-flow with common use cases

Common parts of use cases can be factored out so that these can be (re)used by other use
cases without repeating the description. A use case may then depend on other (subordinate)
use cases, i.e. the uses-relation between use cases. The resultant use case is obtained by
placing the subordinate use cases at the appropriate place in the (superordinate) use case, i.e.
the extension point (Rational, 1997) where the subordinate use case is called. "An extension
point is a location at which the use case can be extended with additional behaviour". In the
flowgraph, this is represented by nesting the subflowgraphs onto the (superordinate) flow-
graph (see Table 2). Here, use case B uses one other use case D. The location of nesting is
given by extension points d in B, i.e. D is called/invoked in d. As with flowgraphs, the con-
trol-flow for use cases with subordinate use cases can be obtained by nesting the sequence
diagram of the used use case onto the sequence diagram of the using use case.

use cases relation UML-notation flowgraph

uses

B(D on d)

extension point d in B

Table 2. Mapping of common use cases onto flowgraphs

2.1.2 Control-flow with variant use cases

In variant use cases, alternatives to the normal use case behaviour are captured. They are also
used for special cases and exceptions. A use case may then be extended with other use cases,
i.e. the extends-relation between use cases. The extensions are subject to conditions. The ac-
tual flow of control in the instantiated use case is determined at ’run-time’.

We follow the description by Jacobson (Jacobson et al., 1992, p 165): What happens when a
course is inserted in this way is as follows. The original use case runs as usual up to the point
where the new case is to be inserted. At this point, the new course is inserted. After the ex-
tension has finished, the original course continues as if nothing had happened. …. The use
case is not inserted only when the condition is true, but instead always takes place. Actually,
the condition is always checked. If it is true, the whole course with extension is initiated; oth-
erwise the original course continues directly.

The mapping onto flowgraphs is given in Table 3. This example is given for one extension
only, i.e. use case B extends use case A at the extension point x and on the condition c. The
extension point x is part of an if-then construct in A. The extension is mapped onto the flow-
graph with a nesting of the flowgraph B onto A in x. The actual flow of control is determined

B

D

<<uses>> on d

..............extension point d............

entry point

exit point

USE CASES IN OBJECT-ORIENTED SOFTWARE DEVELOPMENT

6

by the value of c. If the extend condition c is fulfilled then use case B is executed. In the ex-
tended use case A, the extension point x can be just a dummy action node.

From this it can be seen that a uses-relation is semantically equivalent to an extends-relation
(with if-then) for which the condition is always satisfied.

Another semantics is provided with an if-then-else construct in the extended case A. If the
extend condition is not fulfilled the normal course is followed and action (or use case) D is
executed, followed by the rest of the course in A. If the condition is fulfilled the extending
use case B is executed instead of D, and then the rest of the course in A is taken. Now, the
extending use case can be seen as an alternative to the normal course in use case D. This ex-
tends-relation can be seen as an ’extends-with-alternative’.

As with flowgraphs, the control-flow for use cases with extensions can be obtained by nest-
ing the sequence diagram of the extension use case onto the sequence diagram of the ex-
tended use case.

use cases relation UML-notation flowgraph

extends A(B on x))

in A:

if c then x

extension condition c

extension point x

extends A(B on x)

in A:

if c then x else D

extension condition c

extension point x

Table 3. Mapping of variant use cases onto flowgraphs

2.1.3 Control-flow with component uses cases

In component use cases, parts of use cases are further refined leading to a hierarchical de-
composition of use cases. For each part it must be specified at which point in the superordi-
nate use the subordinate use case has to be inserted. This is exactly the same situation as de-
scribed for the uses-relation for common use cases. The mapping onto flowgraphs is given in
the section on common use cases.

A

B

<<extends>> c, x

extension point x

use case D

condition c............

A

B

<<extends>> c, x

extension point

condition.........

AMIDST/WP2/N003

7

2.1.4 Control-flow with specialised use cases

Use cases can be classified in more specialised versions. The specialised use case – the sub
use case - only contains the additional behaviour for the specialisation and inherits the other
behaviour of the unspecialised use case – the super use case. It has to be specified on which
condition the specialised use case should be taken and at which point the behaviour from the
sub use case has to be inserted in the super use case. This is exactly the same situation as de-
scribed for the extends-relation with variant use cases. The mapping onto flowgraphs is given
in the section on variant use cases.

2.1.5 Control-flow with ordered use cases

Ordered use cases deal with situations where the completion of one use case is required be-
fore the following use case can be executed (Firesmith et al., 1997). A (client) use case may
then precede another (server) use case, i.e. the first use case must be completed first before
the second use can be executed (see Table 4). We use the (not predefined) UML-stereotyped
association <<precedes>> for this relation (or in tables and figures briefly <<p>>).

Precedes is a here defined as a stereotyped association between use cases. It specifies that the
content of the preceded use case is added to the related use case. When an instance of the re-
lated use case has completed its sequence of actions, the sequence continues with the se-
quence of actions of the preceded use case. The mapping onto a control-flow graph is a se-
quencing of control-flow of the use cases.

If a selection has to be made between two component use cases, this selection should be in-
corporated into the superordinate use case. This maps onto an IF-THEN-ELSE flowgraph.

If iteration has to be performed on a component use case, this iteration should be incorpo-
rated into the superordinate use case. This maps onto a WHILE flowgraph.

A use case may be followed by two use cases in a precedence relation (a fork) or a use case
may be preceded by two use cases in a precedence relation (a join) (see the precedence
rhombus in Table 4). In this example A precedes B and A precedes C (a fork); furthermore B
precedes D and C precedes D (a join). There is no precedence relation between use case B
and C so that these use cases may be carried out in any order or even in parallel. However,
parallel execution of flowgraphs is not covered in flowgraph theory (Fenton & Pfleeger,
1996). Possible instances with sequencing are given in the table. Any of the use cases may be
empty (dummy use cases): e.g., if A is empty then this dummy use case provides the (empty)
start node of the use case flowgraph; if D is empty then it provides the stop node of the flow-
graph.

In the requirements elicitation phase, a fork-precedence relation between use cases may be
quite natural to model parallel use cases. However, the precedence rhombus can easily be
confused with a selection between alternative use cases.

USE CASES IN OBJECT-ORIENTED SOFTWARE DEVELOPMENT

8

use cases relation UML-notation flowgraph

preceding

A; B

selection D = …IF(c, A, B)…

condition c

A, B are components

of superordinate D

iteration D = …WHILE(c,A)…

condition c

A is component of

superordinate D

precedence

rhombus

general:

A ; (B || C) ; D

instances:

A ; B ; C ; D

A ; C ; B ; D

Table 4. Mapping of ordered use cases onto flowgraphs

2.2 Interleaving of use cases with uses-relationship

In Jacobson (Jacobson et al., 1992) and UML (Rational, 1997), it is described that a use case
may have several uses-relationships with other use cases. The resulting sequence in the in-
stantiated use case will be obtained by interleaving the used sequences.

use case B

use case A

condition c............

D

use case A

condition c..............

D

A B

<<precedes>>

B

A

C

D

<<p>> <<p>>

<<p>> <<p>>

AMIDST/WP2/N003

9

An example is given in Figure 1. Use case A has 4 subordinate use cases, each indicated with
a (numeric) label. These components are A[1], A[7], A[3] and A[12]. The components lie on
a path (a possible sequence) in use case A. Use case B has 3 components, and use case C has
5 components. Use case C is the using use case, and use cases A and B are the used use cases.

The uses-relation between use cases is expressed by a list of tuples, in which the first compo-
nent refers to the used label and the second component to the using label. A label refers to a
one-entry one-exit use case component. All labels are assumed to be unique. The use case of
the used label is placed onto the use case of the using label. If there is more than one path in a
use case then the uses-relation should be defined for each path separately. We assume that
interleaving has the following properties:

1. The resultant use case does not depend on the order in which the use cases are being
used.

2. The uses-relation between use cases preserves the order of the use cases involved, i.e. the
order of components in the resulting use case corresponds to the order of the components
in the using use cases and the used use cases.

There are two conditions to be satisfied to obtain this order preserving interleaving of use
cases:

1. The used labels in the uses-relation must lie on a path in the used use case; in other words
they are a subsequence of the labels in the used case.

2. The using labels in the uses-relation must lie on a path in the using use case; in other
words they are a subsequence of the labels in the using case.

Furthermore, the using labels in the uses-relations must be unique, i.e. no using use case can
use another use case more than once.

Figure 1. Multiple uses-relation between use cases

The subsequence-condition can be shown in the expanded view on the uses-relation as given
in Figure 2. In the view this condition means that uses-lines between using use case and used
use cases should not cross. The resulting use case consists of A[7], C[10], B[2], A[3], B[5].
The two conditions are fulfilled and the order of components of all use cases involved is pre-
served.

C[9,10,4,11,6]

A[1,7,3,12] B[2,8,5]

[7 on 9, 3 on 11]

<<uses>>

[2 on 4, 5 on 6]

<<uses>>

USE CASES IN OBJECT-ORIENTED SOFTWARE DEVELOPMENT

10

Figure 2. Expanded view on multiple uses-relation between use cases from Figure 1

2.3 Control-flow in sequence diagrams

The flow of control in use cases can be displayed in interaction diagrams, especially the se-
quence diagrams. However, with branching the flow of control is not always obvious. We
model branching through objects with auxiliary lifelines. Once the condition is not anymore
determinative, the auxiliary lifeline is joined with the main lifeline. The values of the condi-
tions are displayed at each branching point. The flow of control can be read quite easily now
from the sequence diagrams as shown in the figures given below.

Figure 3. Branching in a sequence diagram with auxiliary lifeline

In Figure 3 the value of condition c is established. If c is true then message n1 is sent to ob-
ject x followed by sending n2, otherwise message n3 is sent to x followed by n4. In order to
visualise these branches, object x’ is introduced. This object x’ is the same as object x, how-
ever with an own auxiliary lifeline. After sending n2 the flow of control is going back to the
main lifeline of the object x. At sending n3 to object x, on the lifeline of x, there is an (im-

x : ClassX x’ : ClassX

c()

[c = true] n1()

n4()

n2()

join lifelines

n3()

begin of branching on
condition c
with two lifelines of x

[c = false]

end of
branching on
condition c

entry

exit

C[9] C[10] C[4] C[11] C[6]

A[1] A[7]

[7 on 9]

<<uses>>

A[3]

[3 on 11]

<<uses>>

A[12] B[2]

[2 on 4]

<<uses>>

B[8] B[5]

[5 on 6]

<<uses>>

<<p>> <<p>> <<p>> <<p>>

<<p>> <<p>> <<p>> <<p>> <<p>>

AMIDST/WP2/N003

11

plicit) assumption that condition c is false. We can map this sequence diagram onto flow-
graphs. The corresponding flowgraph in this case is: x.c(); IF(c,(x.n1(),x.n2()),(x.n3(),xn4))

Now, there are three types of arrows being used in sequence diagrams: with a message sent to
the target object, a return value to the target object, and – as introduced above – solely the
transfer of control to the target object (which is also implicit with the other arrows). Each of
the arrows may have additionally a guard showing the condition on the flow of control. It is
recommended to indicate the type of arrow being used in the diagrams (by adding the mes-
sage name, return or join/merge/transfer respectively).

Also other objects may be involved in branching. In Figure 4, again the value of condition c
is established. If c is true then message m1 is sent to object y otherwise message m2 is sent to
y. In order to visualise these branches, object y' is introduced with an auxiliary lifeline. After
sending m2 and m4 the flow of control is going back from the auxiliary lifeline to the main
lifeline of object y. The corresponding flowgraph for this sequence diagram is: x.c();
IF(c,(y.m1(); y.m3()),(y.m2();y.m4())). In this example, the flow of control ends at object y,
which provides the exit point of the (partial) sequence diagram.

Figure 4. Branching in a sequence diagram to other object with auxiliary lifeline

2.3.1 Extension points in sequence diagrams

In the use cases presented in the previous sections there are extension points for relations
with other use cases. Usually, an extension point has to be added to a use case once the need
for a relation with another use case becomes apparent. An extension point z in a sequence
diagram may be modelled by some message sent to a (dummy) object z. If there is a condition
on the relation then this will be indicated on the branches. It must be clear which part of the
use case is involved in the extension as part of the branching. An example is given in Figure
5. The original use case just contains one message m sent to object x, being the 'normal'
course in the use case (part a of the figure). The extension of this use case in z is subject to
condition c. The use case can be adapted for the extension with the branching IF c THEN z
ELSE x.m() END (part b of the figure). The sequence diagram of the extending use case can
be inserted on the extension point z (part c of the figure). In terms of flowgraphs, this is a
nesting of the flowgraph of the extending use case onto the flowgraph of the original use
case.

x : ClassX y : ClassY y’ : ClassY

c()

[c = true] m1()
begin of branching
on condition c
control transferred
to object y
with two lifelines

[c = false] m2()

m3()

m4()

join lifelines
end of branching
on condition c

entry

exit

USE CASES IN OBJECT-ORIENTED SOFTWARE DEVELOPMENT

12

Figure 5. A sequence diagram with a conditional extension point

2.3.2 Activity diagrams and sequence diagrams

The flow of control in use cases may be described with UML-activity diagrams (Rational,
1997; Fowler & Scott, 1997). The semantics of activity diagrams can be described in terms of
control-flow graphs in a similar way as shown above for sequence diagrams. The rules for
nesting and sequencing activity diagrams are the same as for control-flow graphs. An exam-
ple activity diagram is given in Figure 6 for the sequence diagram in Figure 4.

Figure 6. Activity diagram corresponding to sequence diagram in Figure 4

2.3.3 Tools and Testing

Use cases may be used for deriving tests for the resulting software. The mapping onto flow-
graphs allows the use of testability metrics for a number of test strategies: all-path testing,
visit-each loop path testing, simple path testing, branch testing and statement testing. For
structured flowgraphs the set can be derived from the component flowgraphs and the flow-
graphs onto which they are nested (Fenton & Pfleeger, 1996).

x.c()

test c

y.m1()

y.m3()

y.m2()

y.m4()

[c = false] [c = true]

x : ClassX z :

[c = true]

[c = false]

m()

entry

exit

x : ClassX

m()

entry

exit

x : ClassX

[c = true]

[c = false]

m()

entry

entry

entry

exit

extending
use case

part a part b part c

exit

AMIDST/WP2/N003

13

For the analysis of flowgraphs there are several tools available, such as Prometrix and
Qualms (for references, see Fenton & Pfleeger, 1996). Metric values can be obtained with
these tools. These static analysers need a front-end in which a flowgraph representation is
derived, in this case from the sequence diagrams of use cases.

Without such analysers, we have to derive tests based on the flow of control in use cases di-
rectly from sequence diagrams, for example in the Rational Rose tool. However, conditional
behaviour with branching is not (yet) supported in Rose98, nor support is provided for the
UML-defined activity diagrams.

2.4 Guidelines

The control-flow semantics of use cases can be described in the well-established model of
control-flow graphs. A prerequisite is that use cases have the one-entry one-exit property. If
not then one may obtain unstructured use cases with an ill-defined flow of control, as the use
of goto-statements in conventional programming may result in spaghetti-code.

The control-flow of the extends-relation and uses-relation between use cases has been de-
scribed in terms of nesting of flowgraphs; the precedes-relation is given as a sequencing of
flowgraphs. It is shown that the uses-relation is semantically equivalent with an unconditional
extends-relation. Parallel execution of use cases cannot be mapped onto standard flowgraphs.

use case
behaviour

relation control-flow semantics

- common
- component

generalization
<<uses>>

behaviour is inserted unconditionally

- variant
- specialised

generalization
<<extends>>

behaviour is inserted conditionally

- ordered dependency
<<precedes>>

behaviour is appended unconditionally

Table 5. Five kinds of use cases with their control-flow semantics (from UML 1.1)

In Table 5 a summary is given of the control-flow semantics for the five kinds of use cases
described in the first part of this document1. Both common use cases and component use
cases have the control-flow semantics of the uses-relation between use cases, whereas variant
uses cases and specialised use cases have the semantics of the extends-relation. Ordered use
cases have the control-flow semantics of a precedes-relation in which behaviour is of one use
case is sequenced (appended) to the behaviour of the preceding use case. Furthermore, we
have augmented the notation for branching in sequence diagrams with auxiliary lifelines to
visualise the flow of control.

With the mapping of use cases onto flowgraphs, the corresponding theory of flowgraphs can
be applied to the analysis of use case diagrams, among others with metrics for structuredness,
complexity and testability.

1 In the Appendix this table is revised to adapt changes proposed in version UML 1.2 and 1.3 (Table 6)

USE CASES IN OBJECT-ORIENTED SOFTWARE DEVELOPMENT

14

From the analysis of use cases with flowgraphs given above, seven guidelines are derived,
which - once followed - facilitate reasoning about the flow of control in use cases and related
sequence diagrams:

• Define for each use case and its sequence diagram both the entry point and the exit point.
These points are prerequisites for a well defined flow of control in use cases with uses-
relationships and extends-relationships.

• Give for each used use case (in a uses-relation) the precise extension point in the using
use case.

• Provide for each extending use case (in an extends-relation) an explicit if-then(-else) con-
struct in the extended use case, together with the extension condition and the extension
point, and - if applicable - the component in the normal use case for which the extension
is an alternative.

• Do not use precedence-forks from use cases (a use case followed by more than one use
cases in a precedes-relation), unless explicit parallelism is required. If used then the re-
lated join use case should be provided.

• Provide an if-then-else construct in the superordinate use case for selection of alternative
component use cases, and a while construct for repetition of a component use case.

• Model branching in sequence diagrams with auxiliary objects with their own temporary
lifeline.

• Label arrows between objects in sequence diagrams with either a message, a return or a
join/merge.

AMIDST/WP2/N003

15

3. Conclusion

In this document we described use cases and their role in the software development process.
There is a strong debate about the precise semantics of use cases. We introduced a formaliza-
tion of use case descriptions based on control flowgraphs. With this formalization, the use of
the standard technique of sequence charts can be improved, in particular for the uses relation
and the extend relation between use cases.

USE CASES IN OBJECT-ORIENTED SOFTWARE DEVELOPMENT

16

References

[Berard, 1996] Berard, E.V. (1996). Be Careful With “Use Cases”. See:
http://www.tao.com/pub/html/use_case.html

[Bergner et al., 1998] Bergner, K., Raush, A. & Sihling, M. (1998). A Critical Look upon
UML 1.0. In: M. Schader & A. Korthaus (Eds.) (1998). The Unified Modeling Lan-
guage. Physica-Verlag, pp. 97-92.

[Booch, Rumbaugh & Jacobson, 1999] Booch, G. Rumbaugh, J. & Jacobson, I. (1999). The
Unified Modeling Language User Guide. Addison Wesley Longman

[Cockburn & Fowler, 1998] Cockburn, A. & Fowler, M. (1998). Question Time! about
Use Cases. OOPSLA’98. ACM Sigplan Notices 33(10) 226-229.

[Fenton & Pfleeger, 1996] Fenton, N.E. & Pfleeger, S.L. (1996), Software Metrics, A Rigor-
ous & Practical Approach. 2nd edition. Thomson, London

[Fenton & Whitty, 1986] Fenton, N.E. & Whitty, R.W. (1986). Axiomatic approach to soft-
ware metrication through program decomposition, Computer Journal, vol. 29, no. 4,
pp.329-339

[Firesmith et al., 1997] Firesmith, D., Henderson-Sellers, B. & Graham, I. (1997). OPEN
Modeling Language (OML) Reference Manual. Sigs, New York

[Fowler & Scott, 1997] Fowler, M. & Scott, K. (1997). UML Distilled. Applying the Stan-
dard Object Modeling Language. Addison-Wesley, Reading

[Graham, 1995] Graham, I. (1995). Migrating to Object Technology. Addison-Wesley,
Wokingham

[Henderson-Sellers, Simons & Younessi, 1998] Henderson-Sellers, B., Simons, A. & Youn-
essi, H. (1998). The OPEN Toolbox of Techniques. Addison-Wesley, Harlow

[Hsia et al., 1994]Hsia, P.H., Samuel, J., Gao, J., Kung, D., Toyoshima, Y. & Chen, C.
(1994). Formal Approach to Scenario Analysis. IEEE Software 11(2), March 1994,
pp. 33-41

[Jacobson et al., 1992] Jacobson, I., Christerson, M. Jonsson, P. & vergaard, G. (1992).
Object-Oriented Software Engineering, A Use Case Driven Approach. Addison-
Wesley, Wokingham

[Jacobson et al., 1997] Jacobson, I, Griss, M. & Jonsson, P. (1997). Software Reuse. Archi-
tecture, Process and Organization for Business Success. Addison Wesley Longman

[Jacobson, Booch & Rumbaugh, 1999] Jacobson, I., Booch, G. & Rumbaugh, J. (1999). The
Unified Software Development Process. Addison Wesley Longman

AMIDST/WP2/N003

17

[Övergaard & Palmkvist, 1998]. Övergaard, G. & Palmkvist, K. (1998). A Formal Approach
to Use Cases and their Relationships. Workshop <<UML>> '98.
http://www.it.kth.se/~gunnaro/www/index.html

[Rational, 1997] Rational (1997). UML Summary, Semantics, Notation Guide, Version 1.1,
Rational Software Corporation

[Regnell et al., 1996]. Regnell, B., Andersson, M. & Bergstrand, J. (1996). A Hierarchical
Use Case Model with Graphical Representation. Proceedings ECBS'96, IEEE Inter-
national Symposium and Workshop on Engineering of Computer-Based Systems.

[Rumbaugh et al., 1991] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W.
(1991). Object-oriented Modeling and Design. Prentice Hall.

[Rumbaugh, 1996] Rumbaugh, J. (1996). OMT Insights. SIGS Books.

[Simons, 1999] Simons, A.J.H. (1999). Use Cases Considered Harmful. Submitted to
ECOOP99.

USE CASES IN OBJECT-ORIENTED SOFTWARE DEVELOPMENT

18

Appendix

In the emerging version of UML 1.2 and 1.3 some major changes are expected with respect to
use cases. Rational profoundly changed the description of the relations between Use Cases in
UML version 1.2 (and 1.3) as compared to version 1.1. The new description can be found in
Booch, Rumbaugh & Jacobson, 1999, pp. 226/8. The new versions 1.2 and 1.3 are not yet
available at the Rational website http://www.rational.com.

In UML version 1.1 (as described in this document):

1. The <<extends>> relation between use cases was described as specialisation but was ac-
tually modelling variant behaviour

2. The generalisation relation was abused for both the <<uses>> and the <<extends>> rela-
tion between use cases

3. There was no (proper) specialisation relation between use cases

In UML version 1.2 / 1.3:

1. The old <<uses>> is now replaced by <<includes>>. It models common behaviour. It is
denoted by a dependency relation between use cases with the arrowhead pointing to the
included use case (compare the OML invokes)

2. The new <<extends>> is now used to model variant behaviour. It is denoted by a de-
pendency relation between use cases with the arrowhead pointing to the extended use
case

3. There is a (proper) specialisation relation between use cases denoted by the generalisa-
tion relation with the (open) arrowhead pointing to the general use case.

The new situation leads to the revised Table 5 in this document:

use case
behaviour

relation control-flow semantics

- common
- component

dependency
<<includes>>

behaviour is inserted unconditionally

UML
1.2 / 1.3

- variant dependency
<<extends>>

behaviour is inserted conditionally

- specialised generalisation behaviour is replaced conditionally

OML /
this docu-
ment

- ordered dependency
<<precedes>>

behaviour is appended unconditionally

Table 6. . Five kinds of use cases with their control-flow semantics (from UML 1.2/1.3)

