FUSION with USE CASES -
EXTENDING FUSION FOR

REQUIREMENTS MODELLING

(Draft)
Derek Coleman
HP Labs
dc@hplsrd.hpl.hp.com

Derek Coleman File: 011 October 20,

REQUIREMENTS PHASE

Purpose:

e Set of techniques for capturing the customer's
concepts by constructing model(s) that can be

- reviewed by the customer
- form the basis of OOA/D

e Support traceability of requirements through to
code

e Not a requirements gathering technique

Derek Coleman File: 011 October 20,
1995

Hewlett-Packard Laboratories

STATE OF ART

« Consensus that the Objectory 'use case'
approach is right.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

MODIFYING THE FUSION METHOD

REQUIREMENTS
DOCUMENT

REQUIREMENTS USE CASE

MODEL

N

D N

ANALYSIS OBJECT |

INTERFACE

MODEL -

MODEL

/

Use Case
Decomposition

OBJECT
INTERACTION
GRAPHS

VISIBILITY

DESIGN GRAPHS

CLASS
DESCRIPTIONS

v 4

INHERITANCE
GRAPHS

——

L

Subsystem
Decomposition

IMPLEMENTATION PROGRAM

e extra model - use case model

« extra refinement step decomposing use cases into system operationgses

¢ some changes to interface model

> - >0

<T>»Z20—-—-4H40—0

erek Coleman File: 011

Hewlett-Packard Laboratories

October 20,

AGENTS AND USE-CASES

Agent (instance) : active entity that interacts
with system (aka Actor in Objectory).

Agent (class) . a set of agents with the same potential behaviour.
system . the agent of interest.

use case (instance) : a goal directed sequence of transactions with the

system whose task is to yield a result of
identifiable value to one or more agents.

use-case (class) : a set of related use case instances.

notation note : class identifiers start with upper case

instance identifiers start with lower case

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

R1.

R2.

R3.

R4.

REQUIREMENTS PROCESS

Define use cases and use case model.

Structure the set of use cases.

the relationship between use cases.

and R3.

Define an external view of the system in terms of

Review with customer and iterate steps R1, R2

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

STEP R1: USE CASE MODEL

<——> - >
~N—_
Clerk /
Drum
\/ Storage
L e

Manager

e A diagram showing agents and use cases in which they participate
with the system.

e Use cases are documented by structured natural language showing
sequence of transactions.

Derek Coleman File: 011 October 20,

H 1995

Hewlett-Packard Laboratories

STEP R1: USE CASE MODEL
NOTATION

e Use case model shows signature of each use case.

e

e Indicates each instance of ¢ involves only interactions between
a and b and system

¢ Indicates each instance of c involves interactions between
some setofa'sand b

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

USE CASE DOCUMENTATION

Use case: name
Description: goal statement

Transactions: steps in use case

e The description should be a clear statement of what the use case
IS supposed to accomplish. It defines the value of the use case.

e The transactions are numbered or lettered paragraphs. Each
paragraph defines a component step in the evolution of the use
case.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

DELIVERY USE CASE (ECO
EXAMPLE)

use case: Delivery

description: Delivery of a load of drums to depot. It's assumed that the
manifest is always correct and there is always enough room in
the depot for the drums.

transactions:

a. The clerk tells the information system that the loading bay is now
empty, so a delivery may begin.

b. The clerk then gives the system the details from the manifest, and
starts checking in the drums. The system issues identifiers for
each of the checked-in drums.

c. The system computes in which the store buildings the drums are
to be stored and tells the drum storage.

Derek Coleman File: 011 October 20,

H 1995

Hewlett-Packard Laboratories

10

SCENARIO DIAGRAMS FOR
USE CASE INSTANCES

clerk system drum storage

load_bay_empty

\J

enter_manifest

>
i check_in_drum
Time _In_ -
drum_identifier
-4
check_in_drum
>
drum_identifier
-

end_check_in

delivery_allocation

e as an aid to understanding, scenario diagrams can be used to
show event flows for use case instances.

v good for showing to customers.

x may anticipate analysis by deciding protocol for interacting with
system eg. every drum entered individually.

Derek Coleman File: 011 October 20,
1995

Hewlett-Packard Laboratories

11

STEP R2: STRUCTURING USE
CASES

* For real systems there are two problems

- individual use cases may be long and complex because
they are too concrete.

- there can be a huge number of use cases because of
many different variants of essentially the same use
case.

» There are two structuring devices

uses - which is an abstraction mechanism.
extends - which allows variants to be defined.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

12

STEP R2: "USES" - AN
ABSTRACTION MECHANISM

- - T
\ /
Clerk T~ / D
rum
@ Storage

Manager

@ e A incorporates B as a sub-flow of events.
P uses e The details of use case B are hidden from A
A uses B « A must say where B is inserted. (cf subroutine)
¢ B is a fully fledged use-case
- it may involve some or all of A's agents.

Derek Coleman File: 011 October 20,
1995

Hewlett-Packard Laboratories

13

STRUCTURING USE CASES WITH
"Uses”

use case:
description :

transactions:
a.

b.
C.

use case:

description:

transactions:
a.

b.

Delivery
Delivery of a load of drums to depot. It is assumed that the manifest is always
correct and there is always enough room in the depot for the drums.

The clerk tells the system that the loading bay is now empty, so a delivery may
begin.

The clerk performs a DRUM CHECK-IN use case.

The system computes in which storage buildings the drums are to be stored and
sends the allocation to drum storage.

Drum Check-in
Entry of a load manifest and all the drums in a load

The clerk gives the system the details from the manifest, and starts checking in all
the drums. The system identifiers for each of the checked-in drums.

Where there are no more drums to be checked-in the clerk tells the system.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

14

SHOWING SUB USE CASES ON
SCENARIO DIAGRAMS

clerk system drum storage

load_bay_empty

\J

enter_manifest

Time

drum_check_in

delivery_allocation

L

e sub use case instances can be shown by a shaded box joining
the agents patrticipating in the use case.

e instances of the sub use case can be shown on a separate
scenario diagrams.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

15

USES

e Like a procedure call, thus a use case may be
used by many different use cases
e.g., "identify customer" could be used
by "place an order"”, "create invoice", etc.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

16

STRUCTURING USE CASES
WITH EXTENDS

o Allows variants of a simple or ideal use case to be
defined.

e Delivery makes the assumptions that
e the manifest and load always agree.
e there is always enough room for the load in the depot.

* A realistic Delivery use case can be defined by with two
extensions

e Discrepancy
e Insufficient Room

which remove the assumptions.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

17

STRUCTURING USE CASES: Extends

e -

Storage
uses,.’ -, extends
" extends ..
== :
Discrepancy Insufficient
Manager Room

@ « Defines two use cases, A and 'A extended by B'.
A
B extends A i extends , gintroduces a variation to A by inserting a conditional flow of
events, for a failure or to deal with an extra complexity.

x B must say where it is inserted in A.

H x B IS not a fu”y ﬂedged use case. Derek Coleman File: 011 October 20,

1995
Hewlett-Packard Laboratories

18

EXTENSION USE CASES

use case: Delivery
description: Delivery of load of drums to depot. It is assumed that the manifest is
always correct and there is always enough room in the depot
for the load.
transactions:
a. The clerk tells the system that the loading bay is now empty, so a delivery may
begin.
b. The clerk performs the DRUM CHECK-IN use case.
c. The system computes in which storage buildings the drums are to be stored and
sends the allocation to drum storage.
extension
use case: Discrepancies
description : Mismatch between manifest and drums checked-in
transactions:
a. After step b in the Delivery use case, if any drum has been checked in
which is not on the manifest, or if a drum is missing from the manifest then the system
informs the clerk.
extension
use case: Insufficient Room
description: Not enough room for drums to be stored in the depot.
transactions:
a. After step c in the Delivery use case, if any drums cannot be stored, the system tells
the clerk so that they can be returned from whence they came.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

19

EXTENDS AND EVO-FUSION

e Extends is an "editing" construct for
Incrementally introducing complexity into use
cases.

o Useful when defining an incremental
development process, e.g.

release #1. Delivery
release #2: extended by Discrepancy
release #3: extended by Insufficient

Room

Derek Coleman File: 011 October 20,

20

STEP R3: DEFINE EXTERNAL
VIEW OF SYSTEM

e Before analysis we need to establish
- what agent instances there are in the
environment.
- how do the use cases interact in time.

e Shown on an use case instance model which is the
use case model with

- agent classes replaced by instances.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

21

STEP R3: DEFINE EXTERNAL
VIEW OF ECO SYSTEM

ECO System

E =@ - »
)\ -~ / L
storage
- ; uses,’ E " extends
o' e
) extends
manager
Dlscrepancy Insufficient
Room

Behaviour :

The ECO system interacts with three agents: clerk, management and drum
storage. There can be any number of occurrences of Delivery, Collection and
Status. Instances of Delivery and Collection may occur in any order but are
mutually exclusive, ie, they must not overlap. A Status use case may occur at
any time and may overlap a Delivery or Collection use case.

e Overall ECO system behaviour is a composition of use cases.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

22

AT END OF REQUIREMENTS

* Requirements defined by Agents and structured
Use cases.

» Use case instances illustrated by event scenarios.

» External view of system behaviour defined by
composition of use cases.

e Customer should review and agree
- but final sign-off may only come during analysis

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

23

ANALYSIS STAGE OF FUSION

Purpose:

* What the system does
e First cut at objects

Modification to method provides

» Traceability between use cases and system
operations (ie, product features)

Derek Coleman File: 011 October 20,
1995

Hewlett-Packard Laboratories

24

CHANGES TO FUSION ANALYSIS
PHASE

e Only Interface Model is affected

» Operation Model (schema) - generalized to
apply to use cases

e Lifecycle Model replaced by interaction graphs
- decomposition of use cases into system

operations shown by a system interaction
graph.

Derek Coleman File: 011 October 20,

Hewlett-Packard Laboratories

25

Al.

A2.

AS.

A4.

AS.

PROCESS FOR DEVELOPING
INTERFACE MODEL

Specify functional behaviour of each complete use case using a
schema. Check for overlapping use cases.

Decompose use cases into component system operations and
output events. Use scenarios to determine appropriate level of
granularity.

[Optional] For each use case draw a system interaction graph
showing the sequencing of system operations.

Complete operation model schemata for system operations as
usual.

Check consistency between use cases and their component
systemoperations.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

26

STEP Al: SPECIFYING
FUNCTIONAL BEHAVIOUR OF
USE CASES

e A use case is like a general and non-atomic system operation.
e The definition of a use case is enriched by adding a schema.

e Schemata are written for fully fledged use cases, i.e., simple use
cases or use cases together with extensions. Schemata are
never written for extensions alone.

e Schema pre- and post conditions provide a more precise
definition of the use case goal in terms of its effect on the
system.

e Schemata provide the criteria for use case based testing and
can help identify object classes.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

27

FORMAT FOR USE-CASE

N1 IFNAAN

Use case: name

Description: goal statement

Reads: object instances that may be accessed but not changed by the use case.
Changes: object instances that may be accessed o _r changed by the use case.
In: <agents and the information that they supply to the system>

Out: <agents and the information that they receive from the system>
Assumes: pre-condition for use ¢ ase.

Results: post-condition for use ¢ ase.

Transactions: steps in use case

» Information
- a set of values e.g., set of drum types that are checked in. or
- an individual data value
e.g., manifest or
- a constant or event
e.g., end-check-in
e In and Out specify the data that must cross the user interface during the use
case.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

28

USE-CASE SCHEMA

Use case: Delivery extended by Discrepancy and Insufficient room.
Description: Delivery of a load of drums to depot.
Reads:
Changes: store buildings in depot,
loading bay

set of n ew drums
In: clerk: {manifest, set of drum types for the checked-in drums}

Out: clerk: {set of identifiers for the ch ecked-in drums,
discrepancy in delivery,
drums to be returned}
drum storage: {allocation of drums to buildings}

Assumes: The depot is safe.
Results: New drums of the appropriate type have been created for each of the supplied

drum-types. Each new drum has an unique identifier which has been sent to the clerk.
The clerk has been notified of any discrepancy between the s upplied manifest and the

drums. As many as possible of the drums have been allocated to store buildings in
the
depot and the drum storage has been notified of the allocation. Any drums that ca nnot
be allocated remain in the loading bay and the clerk has been notified. The depot is
safe.

R RS AT Ve G <<tober 20,
1995
Hewlett-Packard Laboratories

29

STEP Al: FINDING THE OBJECTS

FROM USE CASE SCHEMA

Use case: Delivery
(N\
Reads:
Changes: store buildings in depot,
loading bay
set of new drums
In: clerk: {manifest,
set of drum types for the checked-in drums}
Out: clerk: {set of identifiers for the checked-in drums,
discrepancy in deli very,
drums to be returned}
L drum storage: {allocation of drums to buildings})
Assumes: The depot is safe.
Results: New drums of the appropriate type have been created for each of the supplied

drum-types. Each new drum has an unique identifier which has been sent to the clerk.
The clerk has been notified of any discrepancy between the supplied manifest and the
drums. As many as possible of the drums have been allocated to store buildings in the
depot and the drum storage has been notified of the allocation. Any drums that cannot
be allocated remain in the loading bay and the clerk has been notified. The depot is
safe.

e Pre- and post conditions help find the objects - they are in the
reads and changes clauses.

e The information in In and Out may also become objects or data

attributes.

Derek Coleman
1995

Hewlett-Packard Laboratories

30

File: 011

October 20,

STEP Al: OVERLAPPING USE
CASES

e If two use case instances can overlap in time
then they can interfere with each other if they
have state space in common.

e Simplest policy is to ensure that, as far is
possible, the state space of potentially
over-lapping use cases is disjoint and to
introduce synchronization to protect shared state.

- e.g., if Delivery and Collection could overlap
then access to loading bay and buildings in
depot would need to be synchronized.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

31

STEP A2: USE CASE DECOMPOSITION

» A use case can be decomposed into sub use
cases or system operations.

» The key difference is that system operations are
atomic and cannot overlap.

e System operations correspond to the notion of
uninterruptible procedure or machine instruction.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

32

SYSTEM OPERATION AND USE
CASES

» A system operation is a restricted pattern of event flows.
One agent initiates the system operation by sending an
event to the system. The system responds by sending
Zero or more events to some agents. A system operation
IS atomic, ie., system may not receive any other events

during its execution.

system
operation
initiated by

event s

agent 1

system

r2

agent 2 agent 3

ri

r3

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

33

SHOWING SYSTEM OPERATIONS
ON SCENARIO DIAGRAMS

agent 1 system agent 2 agent 3

agentl system agent?2 agent 3
S
................ » S
gl g s s s o N 'l‘
................. [
r3 L I L

» A system operation is shown as a box on the system timeline
which

- starts with the initiating event
- encompasses all the output events of the system operation

» "System operation s" is shorthand for "system operation initiated
by event s"

Derek Coleman File: 011 October 20,

H 1995

Hewlett-Packard Laboratories

34

GRANULARITY OF SYSTEM
OPERATIONS

e A system operation can be decomposed into a sequence of
lower granularity system operations by introducing new initiating
events.

agent 1 system agent 2 agent 3
agent 1 system agent 2 agent 3

r3

e The effect of s can be achieved by s1 followed by s2.
e Decomposition makes the use case more interactive.

e Similarly a sequence of system operations can be composed to
form a larger grain system operation.

Derek Coleman File: 011 October 20,

H 1995

Hewlett-Packard Laboratories

35

SCENARIOS AND SCHEMATA
FOR SYSTEM OPERATIONS

Operation: s

agent 1 system agent 2 agent 3 Reads:
S
----------------- a_I_ Ch .
L ri anges:
—
| 3 A Sends: agent 1 {r2}
| - agent 2 {r1}
agent 3 {r3}
Assumes:
Result:

e Scenarios drive definition of operation schemata.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

36

STEP A2: DECOMPOSE USE
CASES INTO SYSTEM
OPERATIONS

A2.1: Draw a representative set of event scenarios for
each use case. Ensure all 'corner' cases are covered.

Each event sent to the system initiates a system
operation. Where necessary
add new initiating events

adjust definition of sub use cases to ensure
atomicity of system operation.

A2.2: Define first cut at the schema (description and
sends clause) for each system operation that is
introduced.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

37

A2.1: PARTITION SCENARIOS INTO
SYSTEM OPERATION

Delivery:
clerk system drum storage
load bay empty
enter manifest
drum check in
discrepancy in delivery
B delivery allocation
drums to be returned >
-
« load bay empty and enter manifest initiate system operation
with no outputs.
Problem - there is no Initiating event to cause the output of dlscrepancy

in delivery, delivery allocation and drums to be returned.

Derek Coleman File: 011 October 20,

H 1995
Hewlett-Packard Laboratories

38

A2.1: ADJUSTING SUB USE CASES

Drum Check-in:

clerk system
| check in drum
|< drum identifier
o
o
o
‘ end check in

- check_in_drum can initiate a system operation that outputs
drum_identifier

_ - end_check_in can initiate a system operation that outputs
Solution discrepancy_in_delivery, delivery_allocation and
drums_to_be returned.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

39

A2:1 SCENARIO SHOWING FINAL
PARTITION OF DELIVERY

Delivery:
clerk system drum storage

load bay empty

enter manifest

drum check in
end check in

discrepancy in delivery

- delivery allocation
drums to be returned -
-
Drum Check-in:
clerk system

| check in drum

|‘ drum identifier

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

40

A2.2: FIRST CUT AT SYSTEM
OPERATION SCHEMATA

Operation: load bay empty
Description:

Reads:

Changes:

Sends: ------

Assumes:

Result:

Operation: check in drum
Description:

Reads:

Changes:

Sends: clerk: {drum-identifies}
Assumes:

Result:

41

Operation: enter manifest
Description:

Reads:

Changes:

Sends: ------

Assumes:

Result:

Operation: end check in
Description:
Reads:
Changes:
Sends: clerk: {discrepancy in delivery,
drums to be returned}
drum storage: {delivery allocation}

Assumes:
Result:

Derek Coleman File: 011 October 20,
1995

Hewlett-Packard Laboratories

Status:

STEP A2.2: FIRST CUT AT
SCHEMATA FOR OTHER USE

CASES

manager system
depot status?
status report
@ -c-cccccccccccccccccccccccas
manager system
is vulnerable
vulnerability report
l--cccccccccccccccccccccccccns

42

Operation: depot status?
Description:

Reads:

Changes:

Sends: manager: {status
report}

Assumes:

Result:

Operation: is vulnerable

Description:

Reads:

Changes:

Sends: manager: {vulnerability
report}

Assumes:

Result:

Derek Coleman File: 011 October 20,
1995

Hewlett-Packard Laboratories

STEP A2.2: DEFINE FIRST CUT

SCHEMATA

Collection: Operation: Collect
clerk system drum storage Description:
Reads:
_— Changes:

drums to be retrieved

Sends: clerk: {fulfilled part of order}

drum storage: {drums to be
retrieved}

AsSsumes:

Result:

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

43

STEP A3: SYSTEM INTERACTION
GRAPHS [OPTIONAL]

- The Transaction steps defined for a use case class are
formalized as a System Interaction Graph (SIG)

« Each SIG defines the flow of system operations and output
events for a use case class.

« The diagrammatic notation is almost identical to object
interaction graphs. The difference with OIGs are:

1. out arrows from the system are events not messages

2. there is no unlabeled initiating arrow

Derek Coleman File: 011 October 20,
1995

Hewlett-Packard Laboratories

44

STEP A3: SYSTEM INTERACTION
GRAPHS

Delivery:

4.3 drums_to_be_returned

[not all drums can be stored]

4.1 discrepancy_in_delivery
l [checked in drums differ from manifest] |

1. load_bay_empty - 4.2 delivery_allocation
>
clerk 2. enter_manifest SyStem drum storage
>
| 3* drum_check_in T
3.1 drum_identifier
4. end_check_in
Description:

The clerk issues load_bay empty and enter_manifest system operations. The
clerk then issues a sequence of drum_check in operations, and corresponding to
each system operation receives a drum_identifier. Finally the clerk issues an
end_check in system operation which results in a delivery allocation being sent
to drum_storage. If there was a discrepancy or if not all drums can be stored the

clerk is notified.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

45

STEP A3: OTHER USE CASES
FOR ECO SYSTEM

Collection 2.1 fulfilled_part_of_order

' |

1. load_bay_empty
>

clerk 2. collect system drum storage
>
| 2.2 drums_to_be_retrieved f
Status 1.1 status_report

1. depot_status

>
manager 1'. is_vulnerable system
>

f 1.1' vulnerability report

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

46

SYSTEM INTERACTION
GRAPHS

 SIGs define how use case classes are mapped to system
operations - scenarios just show instances

- provides traceability from informal transactions to
system operations and events.

- necessary for showing that a use case goal is satisfied
by the chosen system operations.
- provides a notation for generating test-cases.
- Used instead of lifecycles

 Optional - currently being evaluated for their usefulness.

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

47

STEP A4: SCHEMATA FOR
SYSTEM OPERATIONS

« The schema for each system
operation is completed as in
standard Fusion

48

Derek Coleman File: 011 October 20,

STEP A5: CHECKING CONSISTENCY
BETWEEN USE CASES AND SYSTEM
OPERATIONS

e For each use case

' I Reads:

Changes: store buildings in depot,

—_— Emm— loading bay

set of new_ drums

Gets: clerk: {manifest, set of drum types for the checked-in drums}

S I G for use Case Puts: clerk: {set of identifiers for the checked-in drums,
discrepancy in delivery,
drums to be returned}

drum storage: {allocation of drums to buildings}

/ \ . : The depot is safe.

/ \ im pIieS Results New drums of the appropriate type have been created for each of the supplied
drum-types. Each new drum has an unique identifier which has been sent to the
clerk.
Opera[ion: load bay empty - The clerk has been notified of any discrepancy between the supplied manifest and
e
DeSCrIpthn: drums. As many as possible of the drums have been allocated to store buildings in
the
Reads- | depot and the drum storage has been notified of the allocation. Any drums that
. cannot
Changes' be allocated remain in the loading bay and the clerk has been notified. The depot is
Sends: ------ R R R G R CRR T T
Assumes: _/
Result: 7
e

schemata for system operations

« Establish the validity by inspections

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

49

STEP A5: OVERLAPPING USE CASES

- If two use cases can overlap then it is also
necessary to check for interference.

- l.e., check that the execution of the system operations
belonging to one use case cannot violate the assumes
clause (pre-condition) of any system operation in any
other use case.

Reference: Specification and Design of (Parallel) Programs
C.B. Jones, Proceedings of IFIP, 1983

pages 321-332

Derek Coleman File: 011 October 20,

1995
Hewlett-Packard Laboratories

50

REST OF ANALYSIS PHASE

« Use schemata for use cases and system
operations to

- construct object model and system
object model.

- check consistency and completeness of
analysis models as usual.

Derek Coleman File: 011 October 20,

Hewlett-Packard Laboratories

51

CONCLUSION

e Fusion and Requirements:
- based on Objectory use cases
- defines an external view of the system

e Provides an external view of the system as a composition of use
cases.

e Provides a seamless front-end for Fusion analysis phase

e Traceable from requirements through to code
— — —

use case system operation object interaction
class

Derek Coleman File: 011 October 20,
1995
Hewlett-Packard Laboratories

52

