

TTrraacceeaabbiilliittyy SSttrraatteeggiieess ffoorr MMaannaaggiinngg
RReeqquuiirreemmeennttss wwiitthh UUssee CCaasseess

bbyy IIaann SSppeennccee,, RRaattiioonnaall UU..KK.. aanndd LLeesslleeee PPrroobbaassccoo,, RRaattiioonnaall
CCaannaaddaa,, ©©CCooppyyrriigghhtt 11999988 bbyy RRaattiioonnaall SSooffttwwaarree CCoorrppoorraattiioonn..
AAllll RRiigghhttss RReesseerrvveedd.. ((VVeerrssiioonn 11..00))
Rational Software White Paper

i

Table of Contents

Abstract.. 1

Introduction and Background.. 1
Traceability Items.. 1
Implicit and Explicit Traceability.. 1
Managing the Supporting Artifacts ... 3
Possible Traceability Strategies... 4
Why Would We Want to Adopt One of the Hybrid Approaches? .. 5

About the Traceability Strategy Catalogue .. 7

Traceability Strategy Catalogue .. 8
Diagramming Notation.. 8
Supporting Traceability Types .. 9
No Use Case Model .. 10
Use Case Model Only.. 12
The Use-Case Model Defines the Product Features .. 15
Features Drive the Use-Case Model.. 17
The Use-Case Model is an Interpretation of the Software Requirements Specification.. 21
The Use Case Model Reconciles Multiple Sets of Traditional Software Requirements.. 26

Traceability Strategies for Managing Requirements with Use Cases

1

Abstract

In many commercial applications of use case modeling techniques, the use case model must be combined with more
traditional requirements capture techniques to provide a requirements management process acceptable to all of the
stakeholders involved in the project. This paper explores the traceability strategies available to organizations adopting use
case modeling techniques as part of their requirements management strategy.

Introduction and Background

Traceability Items
A common point of confusion when discussing Requirements Management, especially when using a tool such as
RequisitePro, is the overloading of the term “requirement”. In addition to items commonly defined as “requirements”, we
need to capture and track the attributes of, and traceability between, many other kinds of item. These other traceability items
include issues, assumptions, requests, glossary terms, Actors, Tests, etc.

Capturing and tracking these other kinds of traceability item helps us in effectively managing our project’s requirements.

Definition: Traceability Item
Any textual, or model item, which needs to be explicitly traced from another textual, or model item, in order
to keep track of the dependencies between them.

With respect to RequisitePro this definition can be rephrased as:
 Any textual or model item represented within RequisitePro by an instance of a RequisitePro requirement

type.

RequisitePro itself provides an excellent tool for defining, capturing and tracking the values, attributes and traceability links
between the many kinds of traceability item involved in software development.

Implicit and Explicit Traceability
There is a certain amount of traceability implicit in any development process. This is usually supplied by the formal
relationships between the artifacts in the process.
Examples of this sort of implicit traceability are:

• Naming conventions
that is, the class in the design model called Fred is implemented by the class in the implementation model
called Fred

• The construction of mappings between the models
that is, the component view in Rose allows the packages and classes in the logical view in Rose to be
explicitly mapped to packages in the implementation model. This mapping can contain re-naming between
the models and the application of different packaging strategies

• Relationships between the model items themselves
that is, in the Rational Unified Process the use case realizations in the design model are traced back to the
use-cases they realize.

• The creation of different perspectives illustrating how the elements of one model satisfy the demands
implicit in the elements of another model
that is, the use case realizations in the design model demonstrate how the model elements of the design
model collaborate to fulfill a use case. These provide a use case perspective onto the design model, which
validates and supplements the static packaging of the classes and packages in the design model.

Traceability Strategies for Managing Requirements with Use Cases

2

All of these examples provide a level of traceability and allow impact analysis to be undertaken using the information held in
the development models.

As shown in the figure below, use case driven development involves a series of inter-related models.

The figure shows the models and the implicit relationships between these models. The relationship between the models
provides a level of traceability that is implicit to the development process.

When undertaking a use case driven development some supporting artifacts are required to support the use-case model and
enable the definition of a complete software requirements specification. In the Rational Unified Process these are the
Supplementary Specifications and the Glossary. Also of interest are the Business Case and Vision documents, which will
contain the definitions of the needs, goals and features for the project.

The relationships between the models do not involve these supporting artifacts and so they are not covered by the implicit
traceability built into the development process.

 These implicit relationships are fundamental to the development process and benefit from being built as a natural part of the
developer’s work. These relationships are central to the modeling process and are constructed, and maintained, as the models
are matured.

 The implicit traceability is limited to the relationships available in our modeling notation.

So why would we want any additional explicit traceability?

 Well if we are to adopt the principles of requirements traceability we would need to integrate the Requirements, model items
and other traceability items into a traceability hierarchy. We may also want to add additional traceability relationships into
our development process.

 The following figure shows an example traceability hierarchy showing the relationship between "features" defined in a vision
document and "software requirements" defined in a use case model and a supplementary specification. It also shows how the
software requirements are traced into the Test Requirements, Design and User Documentation

Traceability Strategies for Managing Requirements with Use Cases

3

 If we look at the relationship between the supplementary requirements (defined in the Supplementary Specifications
document) and the design, and implementation, models we will see that this is not covered by the implicit traceability between
the models.
This is a good example of an additional level of explicit traceability that is often required on a project. Many requirements
trace through the whole series of models due to their implicit relationship with the use-case model. The supplementary
requirements, which are captured alongside the use-case model in the supplementary specification, are not directly related to
any of the packages in the design model that need to consider them or to any of the components in the implementation model
that need to fulfill them.

 Other examples include the relationships between:

• the features of the system and the use case model

• the use case model and the user documentation

• the use case model and the test requirements.

One of the major decisions we need to make when setting up our requirements traceability process is the level of traceability
we require and how much explicit traceability is required to meet this goal. We would like our approach to requirements, and
traceability, management to facilitate the development process, not complicate and restrict it.

As we can see the addition of explicit traceability to our development artifacts could have a significant cost to our project.
This is especially significant when we consider the long-term cost of populating and maintaining this additional information.
What we need to do is ensure that we establish a suitable level of traceability for our project and that we will get a return on
investment on any additional explicit traceability we decide to maintain. We want our developers to spend their time
developing not tracing. To this end we need to establish and evaluate our traceability strategy before we add the cost of
explicit traceability to our project.

The traceability strategy will define the level of explicit traceability we wish to add to our software development process.

Managing the Supporting Artifacts
Figure 1 above shows the artifacts involved in requirements specification in the RUP.

Traceability Strategies for Managing Requirements with Use Cases

4

The thing to note here is that the Use Case Model and the Supplementary Specification form our complete Software
Requirements Specification (SRS). This means that there is no need for us to have a formal Software Requirements
Specification document as required by traditional requirements management techniques.

Figure 2 below shows how a traditional SRS document is often related to the RUP artifacts. The traditional SRS is just an
alternative way of documenting the Software Requirements. It is important to realize that both approaches can provide us
with a Software Requirements Specification that defines the complete external behavior of the system to be built.

This relationship is often misinterpreted as implying that the two models of Requirements Management cannot co-exist.
People often think that they must choose between traditional requirements management techniques, using a formal Software
Requirement Specification document, and use case model based requirements management techniques using a use case model
and a supplementary specification. In fact in certain circumstances it is necessary for the two forms of Software Requirements
Specification to co-exist within the same project.

Possible Traceability Strategies

Is there more than one acceptable traceability strategy?
There are many traceability strategies that could be used to facilitate the requirements management process; even working
within the framework of the Rational Unified Process many approaches are possible. Four of the most common, all of which
the authors have seen in use, are:

• Use-Case Model Only.

In this case the use-case model is the only statement of the systems requirements. Projects that choose this
approach are characterized by close association and trust between customer and developer.

 The Use-Case Model and Glossary and Supplementary Specifications form the entire statement of the
system’s requirements – no additional definitions of Needs, Product Features or software requirements
exist.

• Features Drive the Use Case Model

Traceability Strategies for Managing Requirements with Use Cases

5

This is the default strategy recommended by the Rational Unified Process. The Use-Case Model and
Supplementary Specifications form a complete software requirements specification. Features are
documented in the Vision Document and are traced to use cases. If they are not reflected in the Use Case
Model then they are traced to supplementary requirements in the Supplementary Specifications.

In this case the Use-Case Model acts as the main statement of the functional requirements. The Use Case
Model and Supplementary Requirements are complemented with Needs and Product Features in addition to
the Glossary and Supplementary Requirements.

• The Use-Case Model is an interpretation of the Software Requirements Specification

 In this case the Use Case Model is an interpretation of a formal, traditional Software Requirements
Specification. This is most often used when a formal, traditional Software Requirement Specification is
mandated due to regulatory, or internal, protocol and a use case model is required to enable the practice of
use case driven development.

The Features trace into a formal Software Requirement Specification document (as in traditional
requirements management) but the software requirements are then traced, explicitly, into the Use-Case
Model.

• The Use Case Model reconciles multiple sets of traditional software requirements

 The Use Case Model is the interpretation of a set of formal Software Requirement Specifications from
multiple sources and provides the specification of a single common system.

In this case each stakeholder has their own set of Product Features and Software Requirements, which are
detailed within their own Vision and Software Requirements Specification documents. These multiple
viewpoints, and possibly conflicting desires are then reconciled within a single Use-Case Model, which
specifies what the system will do. This strategy can be very effective when dealing with a large set of
independent stakeholders.

In all of the cases except option 1 we combine our use-case model with elements of the traditional requirements traceability
process.

There are of course many other possible options one of which is to not have a Use-Case Model at all. We will call this option
"No Use-Case Model".

 These, and other approaches, are discussed in more detail in the Traceability Strategy Catalogue below.

Why Would We Want to Adopt One of the Hybrid Approaches?
As we can see the two extreme solutions (Use Case Model Only and No Use Case Model) above take a very purist view only
allowing one form of requirement’s capture. Both of them assume that a one-size-fits-all approach is applicable to all projects
and all stakeholder communities. Both approaches have seen their fair share of success but have fallen into disrepute because
of their inflexibility and inability to handle all of the complex situations, and sets of stakeholder relationships, that arise in
"real world" projects.

 The Rational Unified Process recommends the following traceability hierarchy:

Traceability Strategies for Managing Requirements with Use Cases

6

This is the "Features Drive the Use Case Model" option above and is probably the most efficient traceability strategy but it
should be noted that even when the Rational Unified Process has been adopted this approach is not always the most effective.

 Examples where using Use-Case Modeling as the sole mechanism for functional software requirement specification can
prove problematical include:

• Where there are many, contradictory requirement sources (i.e. many contradictory desires will need to be
tracked and managed).

• Where the project is being undertaken within an organization that insists upon compliance with an existing
traditional requirements capture process.

• Where there are problems in getting the stakeholders to attend modeling workshops to produce a single,
consensus requirements model.

• Where Use-Case Modeling is to be used to enable Object Oriented software development within the
constraints of an existing requirements capture process.

• Where the stakeholder community is unable, or unwilling, to express all of their functional software
requirement level desires directly within the use-case model.

• Where the customer has defined the product to be delivered in the form of a set of traditional software
requirements. This is a very common situation when a development is put out to tender – the traditional
requirement statement then becomes part of the contract for delivery.

 In our opinion the decision about which approach should be adopted must be made within the context of each project and
development organization. There is not a one-size-fits-all solution to this problem and it is foolish to attempt to force all
projects into a single approach to requirements management.

It should be remembered that the Rational Unified Process is a configurable process and can cope will all of the traceability
strategies presented in this document except for the "No Use Case Model" approach (the use-case driven nature of the

Traceability Strategies for Managing Requirements with Use Cases

7

Rational Unified Process precludes the adoption of this option). The decision about which approach to adopt is one of the
decisions to be made during the production of the Rational Unified Process development case.

About the Traceability Strategy Catalogue

To be able to define our traceability strategies we need a mechanism to categories and define our traceability items:

Definition: Traceability Type
A categorization of traceability time (for example, need, product feature, use case, software requirement, test
requirement, actor, glossary term, and so on) based on common characteristics and attributes.

Note: In RequisitePro, Traceability Types will be represented by Requirement Types.

 Setting up a traceability strategy therefore involves three closely coupled activities:

• Identify the set of traceability types required to define our traceability items.

• Identify the valid traceability relationships between these traceability types.

• Identify the attributes required by the traceability items to enable effective requirements management for the
project.

 The Traceability Strategy Catalogue facilitates the first two of these steps by documenting known sets of traceability items
and their traceability relationships. It does not cover the third activity as the definition of the appropriate attributes for the
traceability types is, currently, outside the scope of this paper).

 The traceability strategies described in the catalogue all make use of subsets of the same basic set of traceability types.

• Needs

• Product Features

• Software Requirements (both functional and non-functional)

• Glossary Items

• Use Cases

• Use Case Sections

• Actors

 Note: Often when use case modeling the only software requirements will be the supplementary requirements defined by the
supplementary specification.

 Having the potential to trace between all of the traditional traceability types and the component parts of the use-case model
opens up the number of traceability strategies available to the project.

There are two levels of traceability between our traceability items:

• Basic Traceability

There is basic traceability that applies whichever traceability strategy is chosen. This traceability is implicit
in the nature of the traceability types. This covers things like the relationship between Use Cases and Use
Case Sections or between Use Cases and Actors.

When reading the overview diagrams in the Traceability Strategies Section below this basic traceability is
not repeated for each strategy but is included in the applicable traceability strategies by default.

• Extended Traceability

This is the traceability that is introduced to support one of the specific traceability strategies. This
traceability is much more subjective and varies between the various traceability strategies.

Traceability Strategies for Managing Requirements with Use Cases

8

Traceability Strategy Catalogue

Diagramming Notation
The Traceability Types and their traceability relationships are shown as Unified Modeling Language (UML) diagrams. The
figure below shows how to interpret the usage of the UML in this context.

Traceability Type Name

TraceType1

+children

TraceType2

TraceType1

TraceType1

TraceType2 TraceType3

Classes are used to
represent the Traceability
Types.

Uni-directional relationships between
two Traceability Types are used to
represent a trace-to relationship (in
this case TraceType1s can be traced
to TraceType2s).

Recursive aggregations are used to show
hierarchical relationships between Traceability
Types. Role names are used to clarify the
nature of the parent / child relationship.

Generalization is used to show the sub-typing of
Traceability Types. This is used to indicate that
there are discrete sub-types of particular
traceability types (in this case there are two kinds
of TraceType1; TraceType2 and TraceType3).

To fully understand the diagrams it is useful to know the implementation mapping used when implementing the definitions in
RequisitePro. The table below explains how the diagramming notation can be mapped onto RequisitePro projects.

 Diagramming Notation RequisitePro Mapping
Class / Traceability Type Requirement Type
Relationships The RequisitePro "trace-to" relationships
Aggregations Hierarchical Requirements
Generalization Classification of the super Requirement Type by adding an additional

"sub-classification" attribute.

Traceability Strategies for Managing Requirements with Use Cases

9

Note: RequisitePro allows any traceability item to be traced to any other item. What the traceability strategy defines is the
meaningful traceability links that will be at the heart of the project’s requirement management strategy.

Supporting Traceability Types

Description
In this section we define a set of supporting traceability types that can be used to support whichever traceability strategy is
selected.

Overview

Glossary Term +definition

Assumption

Supporting DocumentIssue

Traceability Types
Traceability Type Description
Glossary Term This Traceability Type defines the traceability items representing

Glossary Terms and their definitions.

This is included in the set of supporting traceability types, as a Glossary
is required regardless of which traceability strategy you choose to adopt.

Issue This Traceability Type allows you to add traceability items representing
issues you want to track within RequisitePro. These issues can then be
associated with whichever traceability items that they impact.

An example of using the Issue traceability type would be to track issues
associated with Glossary Items. If a definition is uncertain, or in dispute,
issues could be raised and including in RequisitePro. This will ensure
that the issue is not forgotten and allows a view to built reporting on all
Glossary Items with outstanding issues. Another good use of this
traceability type is to track issues raised when reviewing the use cases
and other development artifacts.

Assumption This Traceability Type allows you to track the assumptions that you have
made. The assumptions can then be associated with whichever
traceability items they affect.

Supporting Document This Traceability Type allows you to add any documents that you like
into the traceability hierarchy. This is particularly useful for including
pre-existing examples or documentation that clarifies the meaning or

Traceability Strategies for Managing Requirements with Use Cases

10

purpose of another traceability item. The flexible traceability
mechanisms of RequisitePro allow you to associate supporting
documentation with any traceability item of any type.
An example of using the Supporting Document type is to include the
detailed EDI message specifications as supporting information for the
Glossary, or as appendices to the use cases that will use the messages.

Basic Traceability
Traceability Link Description
Glossary Term to Glossary
Term

This relationship allows us to capture both the name of the Glossary
Term and its definition using a single traceability type.

Supporting Traceability Type
to any other Traceability Type

These supporting traceability types can be traced to any of the other
traceability types involved in the chosen traceability strategy.

No Use Case Model

Description
In this case there is no use-case model. The Needs give rise to Product Features, which in turn give rise to Software
Requirements documented in a formal Software Requirements Specification.
 Typified by project managers who say, "I don't need no stinkin' Use-Case Model!"

Characteristics
Characteristic Value Comment
Explicit Traceability High Projects practicing requirements management techniques

without the use of use cases typically maintain a high level of
explicit traceability between the traceability types.

Trust Low
Accountability High
Formality High
Completeness Low It is very difficult to assess a set of traditional software

requirements for completeness.
Document Set Large The document set is usually measured in feet not inches.
Focus Contract The focus of the requirements capture process is on

establishing a legally enforceable contract between the
customers and the developers rather than establishing a shared
understanding of the problem to be solved and the proposed
solution.

Understandability Low The requirements documentation is often inaccessible to both
the user community and the developers. It usually consists of
many individual line items grouped by type or functional area
providing little context for reviewers.

Process Typically
Waterfall

Traditional requirements capture techniques are often
practiced as part of a waterfall development process. The lack
of context for, and the difficulty in assessing the completeness
of, any subsets of the requirements do not facilitate the

Traceability Strategies for Managing Requirements with Use Cases

11

adoption of iterative and incremental development processes.
Development Style Functional

Decomposition
The grouping of requirements by type or functional area tends
to lead to continued functional decomposition as the
requirements are translated into a solution.

Traceability Overview

Need

Software Requirement

Product Feature

traces to

traces to

Functional Requirement NonFunctional Requirement

The two major kinds of software
requirement. These will be realised in
RequisitePro by qualifying the software
requirement with a classification attribute.

Traceability Types
Requirement Type Description
Need The business or operational problem (opportunity) that must be

fulfilled in order to justify purchase or use. Also known as Goal or
Objective.

Product Feature A capability or characteristic of a system that directly fulfills a Need.
Often thought of as the "advertised benefits" of the system.

Software Requirement A condition or capability to which the software being built must
conform.

Traceability Strategies for Managing Requirements with Use Cases

12

Traceability Summary

 Traceability Link Description
Needs trace to Product Features Each Need will be realized by a set of Features. This relationship

allows the business benefit of each Feature to be tracked.
Product Features trace to
Software Requirements.

Each Feature will be realized by a set of Software Requirements.

This relationship allows the business benefit of each Software
Requirement to be tracked and enables the scope management of the
Software Requirements at the Product Feature level.

Benefits and Disadvantages
Pros:

• Well understood

• Is thought to be good for legal contracts (see the many on-going court cases related to delivered software's
ability / inability to satisfy the requirements specified).

• Recommended by many standard processes.

• Enables detailed, low level, formal traceability.

• Does not upset the status quo by introducing "darned new-fangled" ideas

Cons:

• Hard to complete the requirements capture - it is very easy to get stuck in the requirements phase.

• Hard to understand requirements expressed in this form.

• Impact analysis of requirements change is hard to assess.

• Individual requirements have no context.

• High maintenance costs. The lack of any implicit traceability leaves projects with the cost of maintaining
large amounts of explicit traceability relationships.

• The lack of context makes it difficult to identify meaningful sub-sets of the requirements. This in turn
makes scope management, and the incremental delivery of the product, more difficult.

Examples
The no use case model approach to requirements traceability is used widely in many projects in many business areas. Many
organizations require a formal, traditional Software Requirements Specification as the basis for formal contractual
negotiation. This leads them to think that the traditional requirements management approach is the only approach appropriate
for their projects.

Use Case Model Only

Description
"The use-case model is my requirements." A close association, and high level of trust, between the customers and the
developers usually characterize projects that adopt this approach. It is normally used for internal, low-accountability
projects where the developers hope to demonstrate, or gain, a clear understanding of the requirements by developing the
use-case model along with (or approved by) the customer(s).

Traceability Strategies for Managing Requirements with Use Cases

13

In this case the use-case model is the only statement of the systems requirements. The Use-Case Model, Glossary and
Supplementary Specifications form the entire statement of the system’s requirements.

Characteristics
Characteristic Value Comment
Explicit Traceability Low No explicit traceability required. The implicit traceability that

is provided by adopting a use case driven approach is
considered sufficient. Probably no explicit traceability is
maintained, so no Requirements Management tool is used.

Trust High The lack of any needs or feature level analysis means that the
developers of the use case model are given a high level of trust
by the stakeholders to deliver the right system.

Accountability Low
Formality Low
Completeness Low Although a use case model itself facilitates establishing the

completeness of the software requirements specification the
lack of any traceability back to the stakeholder needs often
leads to the production of an incomplete, or over elaborate,
system.

Document Set Small This approach involves the minimal document set.
Focus User The use case model has a user perspective.
Understandability High The use case model is easy to understand for all of the

stakeholders in the project.
Process Typically

Iterative and
Incremental

The use cases place the software requirements in context
facilitating iterative and incremental development (the use case
provides a good unit of delivery). Use cases can also be used
with Waterfall development processes.

Development Style Typically
Object
Oriented

Typically the use cases are used to drive object oriented
software developments although use cases will work with any
style of development. If an OO style is not adopted then a high
level of explicit traceability will be required

Traceability Strategies for Managing Requirements with Use Cases

14

Traceability Overview

Use Case Section +sub-section

Use Case

traces to

Actor

traces to

+description
The Actors description will be held
as a child of the Actor requirement
using RequisitePro's hierarchical
requirement support.

Traceability Types
Traceability Type Description
Use Case This Traceability Type defines the traceability items representing the

Use Cases.
Use Case Section The Use Case Section enables us to include the sections of the Use

Cases in our traceability hierarchy.

This allows us to trace into the individual flows, and the other
properties that comprise the use case.

The presence of the hierarchical relationship to sub-sections allows
us to capture the individual pieces of each section. For example this
would enable us to identify the individual pre-conditions that make
up the pre-conditions section.

Note: In some cases it may be applicable to identify the individual
software requirements within the flow of events of the use case (in
this case very small sections) but this should not be attempted until
the use case itself is stable.

Actor This Traceability Type defines the traceability items representing the
Actors.

Traceability Strategies for Managing Requirements with Use Cases

15

Traceability Summary
Traceability Link Description
Use Case to Use Case Section Each use case is made up of a set of use case sections. This

relationship allows us to track which use case sections make up
which use case.

Use Case Section to Use Case
Section

Some of the more complex use case sections are made up of many
sub-sections. For example a flow of events may be made up of many
sub-flows or the pre-condition section may be made up of many pre-
conditions.

Use Case to Actor This relationship allows us to see which Actors are involved in which
use case.

Actor to Actor This relationship allows us to capture both the name of the Actor and
its brief description using a single traceability type.

Benefits and Disadvantages
Pros:

• Minimal document set

• Minimal effort involved in Requirements Management

• Good support for scope management, impact analysis and incremental development.

• Use cases are easy to understand.

Cons:

• There is no relationship back to the stakeholder needs. No real attempt is made to analyze the problem
before starting on the definition of the solution.

• Some people consider it difficult to accept a contract based on just a use case model.

• Without undertaking any needs analysis it can be difficult to know when the use case model itself describes
a suitable solution. It is easy to let your imagination run away with you when writing the use cases.

• If performing regular releases it can become difficult to product manage and continually manage the
stakeholders expectations without any information at a higher level than the use cases themselves.

Examples
This approach is usually used for small scale, informal, internal projects where the developers and the users work very closely
together.

The Use-Case Model Defines the Product Features

Description
In this case use-case modeling is used as the main requirement elicitation method and the Use-Case Model becomes the
definition of the Product Features to be provided by the system as well as the statement of the software requirements.

This option is only suitable for small developments, with short life cycles, as it does not scale. Even if each use case
represents a feature of the system there will be more features than use cases and, in reality, many features may impact upon
many use cases. As the system evolves the new features of each release are less and less likely to take the form of new use
cases.

Traceability Strategies for Managing Requirements with Use Cases

16

Characteristics
This is a variation on the previous "Use Case Model Only" approach. We have only noted the few differences when
discussing this approach.

Characteristic Value Comment
Explicit Traceability Low As Use Case Model Only. There will be only a small set of

needs and this small amount of additional traceability still
results in small amounts of explicit traceability being required.

Trust Medium / High The addition of Needs to the Use Case Model makes this a
slightly less trusting strategy than having a Use Case Model
Only

Accountability Low
Formality Low
Completeness Medium The use case model itself facilitates establishing the

completeness of the software requirements specification the
additional traceability back to the stakeholder needs helps to
validate the applicability of the use case model.

Document Set Small This approach involves a minimal document set. Use Case
Model plus Vision Document containing the Needs.

Focus User The use case model and the needs both have user perspective.
Understandability High The needs and the use case model are both easy to understand

for all of the stakeholders in the project.
Process Typically

Iterative and
Incremental

As Use Case Model Only

Development Style Typically
Object
Oriented

As Use Case Model Only

Traceability Overview

Need

Use Case

traces to

Traceability Strategies for Managing Requirements with Use Cases

17

Traceability Types
Traceability Type Description
Need As defined for "No Use Case Model"
Use Case As defined for "Use Case Model Only"

Traceability Summary
Traceability Link Description
Need to Use Case In this case the Needs trace directly to the use cases. The assumption

being that the use cases can play the role of the product features
when product and scope managing.

Benefits and Disadvantages
This approach is very similar to the "Use Case Model Only" strategy. The benefits and disadvantages are the same with the
following additions and caveats.

Pros:

• In this case the use case model is related back to the stakeholder needs which helps to assess the suitability
of the use case model.

Cons:

• The use cases may appear to define the features of the system in the early stages of the project but the two
concepts will diverge as the project matures.

• Use cases are not features—what appears to be a time and labor saving strategy will quite quickly become
an un-maintainable mess.

Examples
Although attempts to use this traceability strategy have been observed on small internal projects this approach is not
recommended because of the scalability and long-term product evolution problems. It is recommended that the "Features
Drive the Use Case Model" strategy be adopted if the use case model is to be supplemented with traceability back to the
stakeholder needs.

Features Drive the Use-Case Model

Description
The Use-Case Model and Supplementary Specifications comprise my SRS." This is the strategy outlined and recommended
by the RUP. The Needs and Product Features are documented in the Vision Document and are traced to use cases. If they are
not reflected in the Use Case Model, then they are traced into the Supplementary Specifications.
 In this case the Use-Case Model acts as the main statement of the software requirements. This is complemented by a
supplementary specification containing the software requirements that cannot easily be expressed in the use cases themselves.

Traceability Strategies for Managing Requirements with Use Cases

18

Categories

Characteristic Value Comment
Explicit Traceability Medium In addition to the use case model's implicit traceability, in

this case, we have to explicitly maintain the traceability
between the needs, features and the use case model.

Trust Medium
Accountability High
Formality Medium The addition of Needs and Product Features to the Use-

Case Model gives rise to a more formal requirements
management process than just maintaining a Use Case
Model.

Completeness High Having both the Feature and the Use Case perspective on
the Software Requirements makes it possible to achieve a
high level of completeness with regards to capturing and
prioritizing the Software Requirements.

Document Set Medium We now have a Vision document containing needs and
features, a Use-Case Model and a Supplementary
Specification.

Focus Users,
Stakeholders
and Project
Managers

The addition of needs and features to the use case model
broadens the focus of the requirements activity to more
actively encompass the product manager and all of the
other stakeholders as well as the users. Features are a very
powerful tool for managing stakeholder expectations and
provide a good complement to the use case perspective of
the software requirements.

Understandability High The definition of needs and features alongside a use case
model with supplementary specifications provides a
requirements model that is easily understandable by all of
the stakeholders in the project.

Process Typically
Iterative and
Incremental

As Use-Case Model only.

Development Style Typically
Object
Oriented

As Use-Case Model only.

Traceability Strategies for Managing Requirements with Use Cases

19

Traceability Overview

Need

Software Requirement Use Case Section

Product Feature

traces to

traces to traces to

Actor

Use Case

traces to

traces to

traces to

Note: This traceabil ity l ink is optional as it
can b e derive d from the l ink between the
Product Feature and the Use Case
Section. This l ink is often used to relate
the Product Features to th e Use Cases
before the Use Case Sect ions are written

The se a re th e S upplem entary
Req uirements t hat make up
the Suppl ementary Speci fi ca ti on.

Traceability Types
Traceability Type Description
Need As defined for "No Use Case Model"
Product Feature As defined for "No Use Case Model"
Use Case As defined for "Use Case Model Only"
Software Requirement Any software requirements that apply to the whole system or do not

fit easily into a use case. Where a software requirement is a
condition or capability to which the software being built must
conform.

Use Case Section As defined for "Use Case Model Only"
Actor As defined for "Use Case Model Only"

Traceability Strategies for Managing Requirements with Use Cases

20

Traceability Summary
Traceability Link Description
Need to Product Feature As defined for "No Use Case Model"
Product Feature to Use Case Optional traceability link. The Product Feature may trace directly to

Use Cases. This allows the Product Features to be assigned to Use
Cases before the Use Case Sections have been written and allows you
to do impact analysis on the Use-Case Model at the Product Feature
level and vice versa.

Product Feature to Use Case
Section*

The Product Features trace to the Use Case Sections. This allows the
Use Case Model to be scope managed on a Feature basis and
facilitates impact analysis between the Feature set and the Use Case
Model at a level more applicable than the Use Case itself.

All Product Features traced to a Use Case must also trace to one of
the sections of the use case.

Product Feature to Software
Requirement*

The Product Features also trace to the Software Requirements in the
Supplementary Specification. All Product Features that do not trace
into the use case model must trace to at least one of the software
requirements in the Supplementary Specification.

Use Case to Actor As defined for Use Case Model Only.
Use Case to Use Case Section As defined for Use Case Model Only.

*Each Product Feature must trace to at least one Use Case Section or Supplementary Software Requirement. If it doesn't then
it will not be included in the Software.

Benefits and Disadvantages
This approach maximizes the benefits provided by both the use case and traditional requirements management approaches
whilst minimizing the disadvantages.
Pros:

• Well understood

• Recommended by the Rational Unified Process.

• Enables detailed, low level, formal traceability.

• Having both a Product Feature and Use Case perspective on the Software Requirements facilitates the
completion of the requirements capture - this minimizes the chances of getting stuck in the requirements
elicitation and capture activities.

• The software requirements are expressed in an easy to understand form.

• Impact analysis of requirements change is facilitated by this traceability strategy - the impact of not
implementing a feature or a use case section can be clearly understood.

• The individual requirements have context supplied by the use cases and/or the product features. This makes
it easy to identify meaningful sub-sets of the requirements. This in turn makes scope management, and the
incremental delivery of the product, much easier.

• Minimal complete document set.

• Minimizes the effort involved in Requirements Management.

Traceability Strategies for Managing Requirements with Use Cases

21

• This solution scales well. If performing regular releases the ability to scope manage at both the feature and
use case level allows all of the stakeholders to track the progress of the project at the level of detail they
find appropriate.

• In this case the use case model is related back to the stakeholder needs via the product features that help all
the stakeholders assess the suitability of the use-case model.

Cons:

• Not acceptable in all organizations.

• Some people consider it difficult to write a contract based on Software Requirements expressed mainly as a
use case model although many organizations have successfully achieved this.

Examples
This approach is applicable to all projects where use cases are accepted as a suitable format for the expression of the majority
of the Software Requirements.

The Use-Case Model is an Interpretation of the Software Requirements Specification

Description
"The Use-Case Model is an interpretation of the formal SRS". This is most often used when a formal SRS is mandated due to
regulatory or internal protocol.

A traditional SRS is often considered an essential part of reaching a contractual agreement when outsourcing or undertaking a
fixed price development. This leads to two typical situations:

1. The development organization is supplied with a traditional SRS, by the customer, as the starting point for their
system's development.

2. The SRS document is a mandatory or regulatory deliverable early in the project lifecycle. Every project must have a
traditional, formal SRS document expressing the systems requirements in the same way as all of the other projects.

In these cases the use-case model is used to model and reinterpret all of the software requirements within the scope of the
project. When this approach is adopted it is usual for the SRS to come first - there are other techniques available to render the
information held by a use case model in a format that looks like a formal, traditional SRS (especially when the "Features
Drive the Use Case Model" approach has been adopted) without creating a second Software Requirements definition.

Note: When adopting this approach there is no need for the set of "traditional" Software Requirements to be a complete
statement of the functionality required—the Use-Case Model will provide or ensure completeness of the functional
specification. The "traditional" Software Requirements may just be used to capture the Software Requirements directly
identified or raised by the stakeholders.

Traceability Strategies for Managing Requirements with Use Cases

22

Characteristics
Characteristic Value Comment
Explicit Traceability Very High All of the explicit traceability required by the "No Use Case

Model" approach is required to maintain the formal SRS
plus there is the additional overhead of tracing the
traditional software requirements into the use case model.

Trust Very Low This is a very "belt and braces" approach implying a very
low level of trust.

Accountability High
Formality Very High Again this is a very formal approach with two requirement

management approaches being applied in parallel.
Completeness Very High The complementing of the traditional Software

Requirements Specification with a Use Case Model makes
this a very high completeness approach. Note: in this case it
is assumed that it is the Use Case Model, which will ensure
a complete specification of the systems functionality. The
set of Software Requirement Specifications need not be to
the same level of completeness.

Document Set Very Large In this situation we are basically specifying the system
twice.

Focus Contracts The adoption of this approach is driven by the need to either
fulfill an existing contract, expressed by a traditional SRS,
or fit in with an existing development methodology
requiring an SRS as the contract between the developers
and the customers.

Understandability Medium The production of two Software Requirement definitions
can be confusing at first but the use of the use case model as
the master software requirement definition should lead to an
easily understandable statement of the systems
requirements.

Process OPEN There is enough stuff flying around to support almost any
development process although the use case model is often
added to a traditional SRS to enable the use of Iterative and
Incremental techniques.

Development Style OPEN There is enough stuff flying around to support almost any
development style although the use case model is often
added to a traditional SRS to enable the use of Object
Oriented techniques.

Traceability Strategies for Managing Requirements with Use Cases

23

Traceability Overview

Sup plemen tary Requi re mentGlossary TermUse Case Section

Software Requirement

Need

Product Feature
The Software Requirements make up the
formal Software Requirements Specification
of which the use case model is an
interpretation.

In this case we are t racing items to the
glossary terms as well as from them (as
described when defining glossa ry term as
one of the supporting traceabili ty types).

No te: T hi s traceabil ity l ink is
optiona l as it can be derived
from the li nk betwe en the
So ftware Requirem ents and
the Use Ca se Secti ons. Thi s
li nk is often use d to rel ate
the Software Requ irements
to the Use Cases before the
Use Case Sect ions are wri tten

Note: The Supplementary
Requirements could be regarded
as the Software Requirements
that are not traced into the use
case model.

traces totraces to

traces to

traces to

traces to

Use Case

traces to

traces to

Actor

traces to

Traceability Types
Traceability Type Description
Need As defined for "No Use Case Model"
Product Feature As defined for "No Use Case Model"
Software Requirement As defined for "No Use Case Model"
Use Case As defined for "Use Case Model Only"
Actor As defined for "Use Case Model Only"
Use Case Section As defined for "Use Case Model Only"
Glossary Term As defined for "Use Case Model Only"
Supplementary Requirement Any software requirements that apply to the whole system or do not

fit easily into a use case. These may not need to be restated from the
original set of software requirements but may just be the in scope
software requirements that are not traced to the use case model.

Traceability Strategies for Managing Requirements with Use Cases

24

Traceability Summary
Traceability Link Description
Need to Product Feature As defined for "No Use Case Model"
Product Feature to Software
Requirement

As defined for "No Use Case Model"

Software Requirement to Use
Case

Functional Software Requirements are traced to Use Cases.
A sub-set of non-functional Software Requirements also trace to Use
Cases.
This relationship allows the high level scoping and assessment of the
Use-Case Model in terms of the Use Case’s requirements and
business benefits.
Note: All in scope functional requirements must trace to use cases or
to the Glossary. If they are not reflected in this way then they will
not be implemented.

Software Requirement to Use
Case Section

The Software Requirements that are traced to a Use Case must also
trace to one of the Use Case’s Use-Case Sections.
This relationship allows the verification of a Use Case’s Use-Case
Sections with regard to the requirements placed upon the Use Case.
All of the Software Requirements traced to a Use Case must be
fulfilled by one of the sections within the Use Case. The double
traceability allows us to verify this and to allocate the Software
Requirements to the Use Cases themselves before considering the
Use-Case Sections required.

It is possible that some sections will have no matching Software
Requirements.

Note: All functional requirements that trace to a use case must also
trace to one of the use case’s sections. If they are not reflected in this
way then they will not be implemented.

Software Requirement to Glossary
Term

Functional and non-functional requirements may trace to items in the
Glossary. This is particularly true for “static requirements” that
identify the attributes and relationships of the entities involved in the
system. If a Glossary Term is traced from a Software Requirement
then the Glossary Term must be used in one of the use cases or it is
unlikely to be carried forward into the Design Model.

Use Case to Actor As defined for "Use Case Model Only"
Use Case to Use Case Section As defined for "Use Case Model Only"
Software Requirement to
Supplementary Requirements

The Supplementary Requirements may restate the Software
Requirements that apply to the whole system or do not fit easily fit
into the use case model. An alternative approach is to regard all of
the in scope Software Requirements that do not trace to the use case
model as Supplementary Requirements - this would avoid restating
them.

Benefits and Disadvantages
This approach is to be completely honest a little bit over the top. It is really only appropriate for projects that are presented
with a traditional SRS and wish to use use-case modeling to attain an understanding of the supplied requirements and to
facilitate a use case driven approach.

Traceability Strategies for Managing Requirements with Use Cases

25

 Pros:

• Enables very detailed, low level, formal traceability.

• The software requirements are expressed in an easy to understand form.

• Impact analysis of requirements change is facilitated by this traceability strategy - the impact of not
implementing a feature, a software requirement or a use case section can be clearly understood.

• The individual requirements have context supplied by the use cases and / or the product features. The
presence of the use case model makes it easy to identify meaningful sub-sets of the requirements. This in
turn makes scope management, and the incremental delivery of the product, much easier.

• In this case the use case model is eventually related back to the stakeholder needs via the software
requirements and the product features that help all the stakeholders to assess the suitability of the use case
model.

• Acceptable (with caveats) in most organizations - this approach is all things to all people. This approach is
often used on initial use case projects as a form of parallel requirements process (i.e. the project is running
both the old way and the new way) or it can be adopted to hide the fact that the developers are using use
cases.

• Good for minimizing the disruption to the organization when first adopting, or experimenting with, use
cases. The outside world continues to see the traditional SRS, which allows the standard procedures and
contracts to be used.

Cons:

• Not well understood - people will get confused by having both the traditional statements of requirements
and the use case model.

• Having both traditional Software Requirement Specification and a Use Case Model gives you two places to
get stuck in the requirements activities. It is easy to become confused over which should be the complete
Software Requirement Specification

• A very large document set must be maintained.

• There is a lot of duplication that complicates the requirements management process. The traditional
Software Requirements are likely to fall into disuse as the use cases are updated directly with requirement
changes.

• This is a very high cost, high maintenance approach.

Examples
This approach is useful for development companies using use case driven development techniques that are given a traditional
Software Requirements Specification as part of their contract. The introduction of use cases will enable the development
company to demonstrate their understanding of the requirements and deliver the software in an iterative and incremental
fashion.
 It can also be a useful strategy when introducing use case techniques into a company that uses traditional requirements
capture techniques and has a resistance to changing to a use case driven approach. In this case the intention is for the use
cases to prove their value to the development organization and for the traditional Software Requirements Specification to be
phased out as confidence in use cases grows. This could be the first step in moving towards the "Features Drive the Use Case
Model" approach.

Traceability Strategies for Managing Requirements with Use Cases

26

The Use Case Model Reconciles Multiple Sets of Traditional Software Requirements

Description
"The Use-Case Model is the interpretation of formal SRS's from multiple sources and provide the specification of a single
common system."
 This is a variation on the "the Use Case Model is an interpretation of the Software Requirements Specification" except in this
case there are multiple traditional SRS's supplied by multiple, independent sets of stakeholders. This situation often arises for
software houses that are developing a single application to satisfy the requirements of many different, independent, un-
connected customers. In this case the Use Case Model is the developers consolidated view of the system's requirements and
the individual SRS’s are the individual stakeholders view of their own requirements (with no integration or reflection of the
other stakeholder's requirements). Tracing between the many, individual sets of requirements and the Use Case Model allows
the developers to assess how well they are doing in assessing the needs of the various stakeholder.

Characteristics
This strategy is a variation on the previous "Use Case Model is an interpretation of the Software Requirements Specification"
approach. We have only noted the few differences when discussing this approach.

 Characteristic Value Comment
Explicit Traceability Very High As "Use Case Model is an interpretation of the

Software Requirements Specification".
Trust Very Low As "Use Case Model is an interpretation of the

Software Requirements Specification".
Accountability Very High In this case we preserve all of the individual

customer perspectives in their own SRS’s.
Formality Very High As "Use Case Model is an interpretation of the

Software Requirements Specification".
Completeness Very High As "Use Case Model is an interpretation of the

Software Requirements Specification".
Document Set Very Large In this case we have multiple specifications of the

desired system, which are reconciled by the single
Use Case Model.

Focus Managing multiple
independent customers.

The focus of this approach is in the management of
multiple, independent, possibly contradictory
requirements sources that are politically,
geographically or organizationally unable to work
closely together.

Understandability Medium As "Use Case Model is an interpretation of the
Software Requirements Specification".

Process Typically Iterative and
Incremental.

In this case the developers use the Use Case Model
as their SRS. See "Use Case Model Only"

Development Style Typically Object
Oriented

In this case the developers use the Use Case Model
as their SRS to drive the software's development.
See "Use Case Model Only"

Traceability Strategies for Managing Requirements with Use Cases

27

Traceability Overview

Supplementary Requ irementGlossary Term

Use Ca se

Use Case Sect ion

traces to

Software Requirement

traces totraces to
traces to

traces to

Need

Product Feature

traces to

traces to

In this case there are multiple sets of
product features and software
requirements - this reflects the fact
that we have multiple SRS's.

In this case we are tracing items to the
glossary terms as well as from them (as
described when defining glossary te rm a s
one of the supporting traceabili ty types).

Note: T hi s t ra cea bil it y
li nk is opt ion al as it
can be derived from
the l ink between the
Sof tware
Req uirements an d the
Use Case Se ct ion s.
Thi s li nk is often used
to re late the Software
Req uirements to the
Use Cases before the
Use Case Se ct ion s
are wri tten

In th is case the sof tware
requ irements that are accepted
as suppleme ntary requi remen ts
are resta ted for in cl usion in th e
Sup plementary Specif ications.

Requirement Types
Requirement Type Description
Need As defined for "No Use Case Model"
Product Feature As defined for "No Use Case Model"
Software Requirement As defined for "No Use Case Model"
Use Case As defined for "Use Case Model Only"
Use Case Section As defined for "Use Case Model Only"
Glossary Term As defined for "Use Case Model Only"
Supplementary Requirement Any software requirements that apply to the whole system or do not

easily fit into a use case.

Traceability Strategies for Managing Requirements with Use Cases

28

Traceability Summary

Traceability Link Description
Need to Product Feature As defined for "No Use Case Model"
Product Feature to Software
Requirement

As defined for "No Use Case Model"

Software Requirement to Use
Case

As for Use Case Model is interpretation of SRS

Software Requirement to Use
Case Section

As for Use Case Model is interpretation of SRS

Software Requirement to Glossary
Term

As for Use Case Model is interpretation of SRS

Software Requirement to
Supplementary Specification

In this case the software requirements must be restated in the
Supplementary Specifications document that supports the use case
model to allow the production of a single, consistent, compete SRS
for the development that draws open information from the multiple,
individual stakeholder SRS’s.

Benefits and Disadvantages
This strategy is a variation on the previous "Use Case Model is an interpretation of the Software Requirements Specification"
approach and has much the same benefits and disadvantages.
 The benefit of this approach that differentiates it from the other strategies is its ability to deal with, and preserve the
viewpoints of independent stakeholders in the form of their own formal, individual SRS’s.

 It also has the additional disadvantage of generating an even bigger document set to maintain and trace.

Examples
A software house in the UK was developing a system to support Insurance Brokers that would allow the Insurance companies
to electronically distribute new products.
 This project had in the region of 22 stakeholders of which approximately two thirds were Brokerage companies and one third
was Insurance companies. Among these stakeholders were widely differing requirements; in many cases the insurers had
completely contradictory requirements to the Brokers.

In this case it was decided to produce a Software Requirement Specification for each stakeholder company detailing their
specific requirements and allowing their individual perspectives to be easily maintained. The use case model was used to
present the consolidated vision of the system to all of the stakeholders. Traceability from their original SRS's into the use
case model allowed the stakeholder to see exactly which of their requirements would be met by the system and to validate that
the system was suitable for their needs. It also allowed the software house to track their progress against their target of
fulfilling 80% of all stakeholder requirements for each stakeholder.

Corporate Headquarters
18880 Homestead Road
Cupertino, CA 95014
Toll-free: 800-728-1212
Tel: 408-863-9900
Fax: 408-863-4120
E-mail: info@rational.com
Web: www.rational.com

For International Offices: www.rational.com/worldwide

Rational, the Rational logo, Rational the e-development company and Rational Rose are registered trademarks of Rational Software Corporation in the
United States and in other countries. Microsoft, Microsoft Windows, Microsoft Visual Studio, Microsoft Word, Microsoft Project, Visual C++ and
Visual Basic are trademarks or registered trademarks of Microsoft Corporation. All other names used for identification purposes only and are trademarks
or registered trademarks of their respective companies. ALL RIGHTS RESERVED. Made in the U.S.A.

 Copyright 2000 Rational Software Corporation.

TP 166 /00. Subject to change without notice.

