
Managing Use Cases During
Goal-Driven Requirements Engineering:

Challenges Encountered and Lessons Learned

Annie I. Ant�n, John H. Dempster, Devon F. Siege
College of Engineering

North Carolina State University
1010 Main Campus Drive

Raleigh, NC 27695-7534 USA
+1 919.515.5764

{aianton,jhdempst,dfsiege}@eos.ncsu.edu

ABSTRACT
Use cases and scenarios have emerged as prominent
analysis tools during requirements engineering activities
due to both their richness and informality. In some
instances, for example when a project's budget or schedule
time is reduced on short notice, practitioners have been
known to adopt a collection of use cases as a suitable
substitute for a requirements specification. Given the
challenges inherent in managing large collections of
scenarios, this shortcut is cause for concern and deserves
focused attention. We discuss our experiences with a goal-
driven analysis of a requirements specification for an
electronic commerce application for a large international
company. We describe scenario management within the
context of this goal-driven requirements analysis effort. In
particular, we identify the specific risks incurred, focusing
more on the challenges imposed due to traceability,
inconsistent use of terminology, incompleteness and
consistency, rather than on traditional software project
management risks. We conclude by discussing the impact of
the lessons learned for requirements engineering in the
context of building quality systems during goal and
scenario analysis.

Keywords

Scenario management, use cases, requirements engineering,
goals, requirements traceability, electronic commerce.

I. INTRODUCTION
Scenarios have increased in popularity among software

engineers due, in part, to Jacobson's use case approach
[Jac92] and the more recent introduction of the Unified
Modeling Language (UML) [BRJ99, Fow97] for systems

engineering. UML is based on the object-oriented
approaches of Booch [Boo94], Jacobson [Jac92] and
Rumbaugh [Rum91] and has engaged so much interest that
it now boasts its own conference. The availability of UML
and the associated tool support has made scenario and use
case analysis even more accessible to requirements analysts
and practitioners.

Scenarios are also widely used in other areas of system
development, including Human Computer Interaction
(HCI), software engineering and organizational process
design [AP98b]. Jarke et. al. also discuss the lack of a
unified research framework for scenario management
despite the various disciplines in which scenarios have
received widespread attention including HCI, strategic
management and software engineering [JBC98]. Scenarios
are used purposefully to "stimulate thinking" in all three
disciplines [JBC98]. HCI scenarios support the
specification of user interfaces and strategic management
scenarios help with the exploration of alternative futures. In
software engineering, scenarios are used to gather and
validate requirements [AP98b, JBC98]. Scenarios are also a
reasonable approach for managing change during the
software process. For example, evolutionary scenarios are
used to envisage how a system itself may change due to, for
instance, political or technological discontinuities [AP98b].
While scenarios are useful for managing change and
evolution, managing scenario traceability across multiple
changes becomes increasingly difficult.

The state of scenario management in practice was
reported in [WPJ98]. In this study, the use of scenarios was
examined in 15 European projects to learn how scenarios
were produced and utilized as well as to identify the
benefits and problems associated with scenario usage in
industrial settings. As documented in [WPJ98],
practitioners using scenarios and/or use cases in industrial
settings incur very specific challenges. Specifically,
Weidenhaupt et.al. highlight several key areas needing
support including: the need for appropriate process

Submitted to IEEE International
Conference on Software Engineering

(ICSE 2000)
Limerick, Ireland

guidance as well as comprehensive support for managing
both scenario traceability and evolution.

Researchers at North Carolina State University (NCSU)
are developing scenario management strategies [AAB99] in
an effort to address the challenges discussed in [WPJ98].
The NCSU scenario management strategies support
evolution by employing shared scenario elements to
identify and maintain common episodes among scenarios.
Measures are used to quantify the similarity between
scenarios, serving as heuristics that provide process
guidance to practitioners in finding, for example, duplicate
scenarios, scenarios needing further elaboration or those
that may have been previously overlooked. Tool support is
under development, but is not yet available. In the interim,
we are engaging in requirements specification activities
involving the analysis of large collections of scenarios and
use cases, to deepen our understanding of the challenges
our scenario management tool must address.

This case study was motivated by our desire to observe
scenario management in an industrial setting while
applying goal-driven requirements analysis methods. This
paper reports on our experiences in managing a large
collection of use cases during our requirements
specification activities for an electronic commerce
application. In Section II we discuss relevant work in goals
and scenarios for requirements specification. Section III
focuses on the case study as well as the challenges and
associated risks incurred. The lessons learned are detailed
in Section IV, followed by discussion of future work in
Section V.

II. RELATED WORK
The terms use cases and scenarios mean different things

to different people; we thus discuss these terms in the
context of other relevant related work including the goal-
based requirements engineering literature.

A. Scenarios and Use Cases
Scenarios aid analysts and stakeholders in developing an

understanding of current or envisaged systems and business
processes [AMP94, Ant96, Ant97, AP98a, AP98b, BL98,
Jac92, Pot95, WPJ98]. They describe concrete system
behaviors by summarizing behavior traces of existing or
planned systems. Use cases, introduced by the object-
oriented community [BRJ99, Fow97, Jac92], describe the
possible system interactions that external agents may have
with a system. In UML, scenarios are comprised of sets of
actions and interactions that involve specific objects.

A representational framework for scenarios and use
cases appears in [AP98b]. In the human computer
interaction (HCI) community scenarios have been used to
improve communication between end-users and developers
for designing user interfaces, task modeling and
prototyping. Requirements engineering benefits from an
initial emphasis on use cases, but they benefit in turn from

a semantics that connects them to purposeful activities
[Pot95, Pot99].

B. Goals and Scenarios
Goals are the objectives and targets of achievement for a

system. Goal-driven approaches focus on why systems are
constructed, expressing the rationale and justification for
the proposed system. Since goals are evolutionary, they
provide a common language for analysts and stakeholders.
Focusing on goals, instead of specific requirements, allows
analysts to communicate with stakeholders using a
language based on concepts with which they are both
comfortable and familiar. Furthermore, since goals are
typically more stable than requirements [Ant97], they are a
beneficial source for requirements derivation. Goals are
operationalized and refined into requirements and point to
new, previously unconsidered scenarios. Similarly,
scenarios also help in the discovery of goals [AMP94,
AP98a, JBC98, Pot99, RSB98]. Although the merits and
benefits of scenario-based and goal-based analysis in
requirements engineering are well understood, researchers
are now faced with the question of how to use scenarios
and goals in a complimentary fashion. Several approaches,
which we briefly discuss, do show promise [AAB99,
MMM98, RSB98].

Organizing goals hierarchically provides a useful way to
represent the relationships between goals and subgoals so
that we can reason about those relationships [AMP94,
DvL93]. The Goal-Based Requirements Analysis Method
(GBRAM) [Ant96, Ant97, AP98a], uses a goal topography
to structure and organize such requirements information as
scenarios, goal obstacles, and constraints. These
topographies support analysts in finding and sorting goals
into functional requirements while scenarios help in
documenting issues, surfacing new goals and elaborating
requirements. Goal hierarchies offer a useful way to
visualize goals and their related scenarios [Ant97, ALR96]
as does the previously discussed scenario management
strategy [AAB99]. CREWS-SAVRE also organizes
scenarios hierarchically according to goals and goal
obstacles; the goals serve as a grounded, shared
understanding for stakeholders [MMM98]. Finally, goal-
scenario coupling, as documented in [RSB98, RGK99],
provides an integrative approach to goal and scenario-
oriented requirements analysis. The CREWS-L'Ecritoire
approach employs bi-directional coupling to facilitate
navigation between goals and their associated scenarios.

III. ANALYSIS OF THE ELECTRONIC
COMMERCE AND QUOTATION SYSTEM

The company with which we collaborated on this effort
has numerous plants throughout Europe that produce a
variety of electrical products. The parent company
maintains its own sales force, whose members provide
quotations for product pricing and place orders for

customers. The processes for these two activities were
identified as areas for improvement. Existing processes for
providing quotations or ordering products were numerous
and ad hoc, with each sales person and/or each plant having
a different process, using various computer programs,
printed catalogs or direct sales persons as plant contacts.
The variety of methods used by sales people qualifies the
process as a candidate for process improvements. Such
desired improvements include producing consistent
quotations and order pricing as well as more adequate
means for tracking statistical information to reveal
important market trends. A new, more tightly integrated
system is needed to facilitate the provision of consistent
lowest prices and to aid the company's distributed sales
force by providing a more streamlined bidding process. An
electronic commerce, company-wide intranet system was
required to manage the quotation and ordering process for
product bidding. We now provide an overview of our goal-
driven analysis of the system and discuss the challenges
encountered during the case study.

A. Goal Analysis Efforts
A goal-based approach [Ant97] was adopted in an effort

to surface requirements for the redesign of the electronic
commerce quotation and ordering system. During our
inquiry-driven analysis [PTA94], each goal was annotated
with relevant auxiliary notes including agents, constraints,
pre- and post-conditions, scenarios and questions as well as
answers provided by various stakeholders during follow-up
interviews. Since we lacked tool support to record analysis
artifacts (e.g., goals, agents, constraints, etc.), we employed
Microsoft Excel to produce a spreadsheet workbook similar
to those produced in previous case studies [Ant97, AP98a].
The Excel sorting capability facilitated the identification,
ordering as well as the reconciliation of synonymous and
redundant goals. Since traceability was an objective
throughout the study, we tracked and documented any
changes to the goals and the associated rationale, such as
when they were merged and/or removed, as well as the
origin of the goal. Naturally, since this was a manual
process, we also took measures to ensure that we did not
lose any auxiliary notes associated with each of these
'modified' goals [Ant97].

Our analyst team was provided with a Software
Requirements Specification (SRS) that contains typical
descriptive information such as system scope, boundaries, a
feature summary, etc. as well as a total of 52 use cases and
26 screen designs. For the remainder of this paper, we use
the term 'authors' to refer to the six individuals who
authored the SRS, whereas the term 'analysts' refers to
those who actively participated in this case study (the co-
authors of this paper). 'Stakeholders' include the authors of
the SRS as well as a number of intended users of the
electronic commerce and quotation system.

Figure 1 shows the basic structure for a typical SRS use

case. Each of the 52 use cases in the SRS includes the
following information:

¥ a unique identifier;
¥ a title;
¥ an overview;
¥ pre- and post-conditions;
¥ a main scenario;
¥ zero or more secondary scenarios;
¥ the required Graphical User Interfaces (GUIs);
¥ a list of use cases included or extended by each use
 case; and
¥ a revision history.

Figure 1: Example SRS Use Case Structure

Use Case #

Overview:

Postconditions

Preconditions:

Main Scenario:

Required GUI:

Secondary Scenario

Extends/Uses:

Revision History:
1.

A.

2.
1.

1.

2.
1.

2.
1.

2.
1.

4.

3.

A main scenario is an ordered list of user interactions
with the system. The primary difference between a main
and secondary scenario is that a main scenario is normative
while secondary scenarios show possible branching and
alternative courses (such as when exceptional conditions
arise). The steps in the main scenario are numbered
sequentially while the secondary scenarios are essentially
textual descriptions in the form of a paragraph with no
numbered steps.

The analysts met for sessions ranging from one to three
hours in duration, once a week for two months. Prior to
each weekly meeting, individual analysts performed a goal
analysis of agreed upon use cases that we then discussed

and revised while collaboratively recording all goals and
auxiliary notes. Our meeting preparations allowed us to
concentrate primarily on revising and extending the
original analyses during our meeting sessions. During these
sessions we applied the GBRAM [Ant96, Ant97, AP98a].
Our analysis efforts initially generated an initial total of
292 goals. While identifying these goals we struggled due
to five specific challenges posed by the collection of use
cases with which we were working. These challenges, and
the associated risks incurred, are discussed in the following
subsections.

B. Challenges Encountered and Associated Risks
During this case study we faced various challenges

which required unexpected extra work on the part of the
analysts and introduced additional risk into the
requirements specification:

1) Context was not always obvious for each use case
Use cases in and of themselves do not always provide an

adequate understanding of the interaction that the given use
case was intended to describe; this is perhaps partially due
to the way individual authors write use cases. On numerous
occasions we, the analysts, had to refer to other use cases to
deepen our understanding of a given use case. There are
various possible reasons for this. First, while the analysts
are all very familiar with the domain of electronic
commerce, there were some use cases that dealt with
company-specific practices and policies (e.g., underlying
business rules which had not been clearly articulated; use
case authors had the benefit of this tacit knowledge).
Second, although each use case in the SRS included a brief
overview, the overviews did not on average provide
appropriate contextual information to describe the
circumstances under which the use case is relevant, as
advocated in [Lil99]. Context makes use cases more
meaningful; thus, use case authors should seek to make use
cases understandable to all stakeholders (including the
authors themselves). We chose to provide this context by
always attaching a goal to each use case as in [AMP94,
Ant97, RSB98].

Lack of contextual information increases the risk that
system requirements may be misinterpreted. Context makes
use cases more meaningful and when adequate context is
not provided, valuable information about the use cases may
be lost. We, thus, incur the obvious risk of producing an
incomplete or erroneous specification. Use cases are
typically utilized to surface requirements early on and yet
without the appropriate context the very benefits we expect
are reduced, since it is likely that errors will result later in
the process from the misinterpretation.

2) The use case authors were not the intended users of
the system

The authors of the SRS are not the intended end-users,
thus they lack implicit knowledge of the tasks that users

expect to complete with the system. The authors did elicit
information from a sample customer base; however, these
customers were included only in the initial stages of the
SRS production. Since, the actual use cases were not
written in participatory fashion, intended users were later
unable to contribute additional scenarios or examine the use
cases for accuracy and validation. Instead, the SRS authors
relied excessively on the available user interface designs to
construct the use cases, producing a collection of use cases
that focused more on the systemÕs GUI rather than the
intended functionality of the system.

Although the authors initially involved the users of the
system in the collection of data for the SRS, a more
customer oriented approach, such as contextual design,
would have been very helpful. In contextual design the
actual users are observed using the system with the intent
of ensuring the focus of the analysis is on users' tasks and
objectives [BH98]. Hence, one would expect more directed
use cases to be produced given more stakeholder
involvement.

Additionally, the authors constructed the use cases from
the perspective of one actor, a salesperson, even though
other actors were cited according to the role(s) they
supposedly played in each use case. Unfortunately, these
other viewpoints were never considered or integrated into
the specification.

In light of the lack of user participation throughout the
requirements specification process, we identified a number
of potential project risks. Since the scenarios were
developed by the authors and were not validated by system
users, we suspect the scenarios provide some
misinformation about typical and/or expected user and
system interactions. This lack of validation is problematic
during product design and development [Dav93]. The fact
that the authors only investigated scenarios from one
actorÕs viewpoint is also an area of potential risk, since
exploring into multiple viewpoints yields more
comprehensive coverage of the requirements.

3) Traceability is difficult to manage
Due to the lack of requirements management tool

support, a significant amount of overhead was incurred due
to our having to manually maintain pre-traceability
information including the source and origin of each goal
[DP98, Ram98]. When we removed duplicate goals, as in
GBRAM [Ant97], we maintained a list of all the duplicate
goal numbers as a minimal form of traceability. When
additional traceability information was needed we had to
refer to previous versions of the spreadsheet to determine
the true source of a given goal or scenario. This was
particularly time consuming and awkward. We maintained
this source information manually using rudimentary
manipulations (e.g., copy and move) to the new
spreadsheet. While maintaining pre-traceability requires
dutiful attention, it can be greatly simplified with

appropriate tool support.
Traceability is a measure of quality that reduces the risk

of, for example, not propagating changes across lifecycle
artifacts. Maintaining traceability information can be quite
time consuming, thus it may be tempting to reduce or
skimp on traceablility efforts in order to save time or
money. Additionally, any manual processes (as were our
traceability efforts throughout this study) are always
subject to human error. Manual traceabilty techniques may
also result in the production of static documents. These
static documents often remain unmodified after their initial
creation and as a result often become obsolete [Ram98].
Traceability must be implemented to reduce the risk of
inconsistencies and ensure compliance with the
requirements specification. Introducing additional
traceability can affect cost and scheduling estimates.
However, while traceablity may require an initial
investment of time and money, the gains and benefits well
outweigh the costs [Ram98].

4) Deriving use cases primarily from the current
system's GUI focuses too much attention on design and
implementation

The purpose of creating a use case dictates and effects its
style and content. The analyzed SRS gives the appearance
of having been written in retrospect, possibly as a process
requirement dictated by management. Additionally, as
previously mentioned, the SRS authors relied excessively
on the available user interface to construct their use cases,
producing a collection of use cases that emphasized the
expected user interface rather than the intended
functionality of the system. Perhaps not coincidentally, the
SRS authors were also responsible for designing the GUI.
Unfortunately, one task seemed to taint the other as the use
cases became a product of the screen design, not of
implementation-independent functionality. The production
of use cases concentrated primarily on GUI specific
features, and in this case, reflects the perspective of those
individuals responsible for the GUI production, instead of
the perspective of the individuals who use (or will use) the
system.

Deriving use cases from GUIs rather than from the actual
user goals and objectives yields too much implementation
specific detail which should be addressed during software
design, not requirements engineering [Lil99]. The use
cases in the SRS were laden with details about specific
design widgets, items that are inherent to, and should be
included in a system design. The GBRAM includes
heuristics for goal refinement, one of which indicates that
any goals based on system-specific entities should be
restated without including system-specific information
[Ant97]. A misdirected GUI use case focus poses
significant challenges since, according to the GBRAM goal
refinement heuristics, all GUI references must be
extrapolated from the goals that were derived from these

GUI-specific use cases. In the following subsection we
further discuss how this heuristic affected goal evolution in
our study.

Inconsistency across available screen designs also results
in corresponding inconsistencies in the derived goals. For
example, multiple use cases included statements pertaining
to specific menus and screen navigation (e.g., "return to the
main screen"). However, the return to main screen option
was not always provided on the screen layout. It is not
clear if this option was erroneously included in the use
cases, or erroneously omitted from the screen design. Either
way, an inconsistency exists although they may be
considered irrelevant since these details should not be
included in a use case unless the purpose of the use case is
specifically to illuminate design issues pertaining to the
user interface.

The use cases in the SRS provide a system scope
description of user and system interactions, not a
description of interactions between subsystems. The
inclusion of design information in use cases which describe
subsystem interactions is acceptable but such information
should not be recorded in system level use cases [Lil99].
Instead, as suggested in [Lil99], design information
discovered during requirements analysis should be placed
in a separate "Design Guidance" document.

According to [EJW95], design considerations may be
equated to problem solutions, and introducing these
solutions prior to the problem definition may corrupt the
analysis process. The over-reliance of the use cases on a
GUI, thus, introduces the risk of software design interfering
with the analysis process. If design considerations are
introduced prior to the completion of the requirements
specification, the design of the product may suffer. Since
the screens and the scenarios are so tightly bound, the risk
that the scenarios (and the subsequently derived goals) and
the screen design may be inconsistent increases as design
modifications are introduced [Lil99]. Such coupling
between design and scenarios can increase the effects of
traditional software engineering risks associated with cost
and scheduling.

Consider a baselined GUI design which serves as the
basis for use case construction during requirements
engineering activities. If a major requirement is discovered
after the design is baselined it may require significant
modifications to the GUI. It is then likely that both the
GUI and the use cases would have to perhaps be
reinvented; alternatively, the designer may need to
incorporate changes into the design in less than optimal
ways to avoid having to redesign the GUI. Obviously, it is
best to avoid such a situation entirely by not allowing
implementation-specific details to creep into the use cases.

5) Missing and inconsistent naming of use cases is
indicative of an incomplete and flawed specification

The list of included and extended use cases often pointed

to undefined or nonexistent use cases. Additionally, some
use cases that were referenced by other use cases were
never defined. In order to identify the missing use case
names, we created an "Includes Tree" to show the
relationship between all the use cases and discovered 15
references to missing use cases. Figure 2 shows a portion
of a use case tree in which all referenced cases are defined.
In contrast, Figure 3 shows a use case tree in which use
cases referenced do not exist. The use cases referenced
could actually be missing use cases, or may be using
inconsistent names when referencing other use cases.

The risks associated with missing use cases are similar to

those of use cases lacking context. A missing use case,
while it provides a use case name, obviously represents
missing interaction information that in turn suggest missing
requirements. A simple use case name is not a sufficient
description of all the details of a use case which affect the
associated derived requirements.

Discrepancies between use case names also introduce an
element of risk since use cases provide a way to reference a
potentially large body of information using just a few
words (the use case name) or a unique identifier, such as a
number. When use cases are referenced using the incorrect
name it increases the likelihood for conflicts.

C. Goal Evolution
The goal analysis process began by identifying goals in

the main and secondary scenarios. Goals and their
associated information were identified, numbered,
classified and stored. The information tracked included the
goal number, responsible agent, the use case from which
the goal was derived, any constraints identified for the goal,
pre- and post-conditions, as well as any issues, rationale or
questions related to the goal. Documenting this
information provides both pre-traceability and the
preservation of information that will be used later to
discover new goals and requirements.

As preparation for each meeting session, goals were
identified from predetermined scenarios by each of the
analysts. During the sessions we reviewed the goals while
documenting any newly identified goals. This process
improved the accuracy of the goals by inserting a level of
review and inspection prior to the recording of each goal. It
was in these reviews that the problems associated with
management of the goals and scenarios began to take
shape.

Figure 4 shows the evolution of the goal set. The shaded
boxes represent those goals which were removed from the
goal set for various reasons that we now discuss. Our initial
analysis of the use cases produced 292 goals. The top two
rectangles on the right side of the figure show the number
of goals that were merged to eliminate synonymous and
redundant goals.

Goals were refined by applying the GBRAM heuristics
[Ant97], resulting in the elimination of 100 goals. Not
surprisingly, 70 GUI-specific goals were identified.
Although these goals contain important information for
usability purposes, we ignored them for purposes of
defining the system requirements since they are
implementation-specific [Ant97]. The 70 goals were
deleted, however 12 of them were suggestive of underlying
processes or activities so we reformulated those goals by
restating them. These restated goals convey
implementation-independent ideas taken from the extracted
goals. Here the categorization enriched the data set by
identifying implementation-specific goals and either
replacing or deleting them from the goal set.

FIGURE 2: SRS Use Case "Includes Tree"

Create Header
(4)

Get Header Notes (7)

Get Ship-To Address
Information (47)

Get Header General
Info. (5)

Get Header Terms (6)

FIGURE 3: SRS Use Case "Includes Tree" with Missing Use Cases

Edit Quote
(11)

Retrieve Existing Quote
(2)

Edit Quote Header
(Missing use case)

Edit Existing Item
(Missing use case)

Close Quote (Missing
use case)

Goals were named using meaningful keywords selected
from a predefined set of goal categories [Ant97]. The
boxes in the ellipse in Figure 4 show the number of goals
named with each of these keywords. In Section IV we
provide further discussion of ACHIEVE, MAKE,
NOTIFY, INFORM, PROVIDE and ALLOW goals.

IV. LESSONS LEARNED
Despite the challenges encountered, our analysis yielded

several lessons learned which we believe to be of interest to
practitioners and researchers alike.

1) Achievement goal categories lead to the derivation of a
more complete set of goals

We found it valuable to separate user goals from system
goals by expressing achievement goals accordingly.
Previously, when employing the GBRAM [Ant97], we
made no real or clear distinction between MAKE and
ACHIEVE goals. During this case study, however, we

chose to express these goals as follows: all user goals
(those that express the users' objectives) were named with
the keyword ACHIEVE while all system goals (those that
express the system's response to the users' goals) were
named with the keyword MAKE. For example, <ACHIEVE
quote requested> is representative of a user task while
<MAKE quote retrieved> represents the system's
response to the user's goal. Although this distinction may
seem unremarkably simple, it proved to be a very valuable
technique. This correspondence between the user and
system goals helped us more clearly define the system
boundaries and appropriately assign goal responsibilities.
Each time we identified an ACHIEVE goal, we also
systematically considered any possible, related MAKE,
PROVIDE or ALLOW goals. Likewise, for each MAKE
goal, we formally considered all the possible ACHIEVE
goals.

This simple distinction between user and system goals
helped us identify nearly twice as many functional
requirements as we had during previous goal-driven
analyses [Ant96, Ant97, AP98a]; we attribute this to the
more strict and methodical consideration of multiple
viewpoints associated with the users' objectives and the
system responses to enable those objectives. The resulting
user goals afford the ability to construct a more formal use
case diagram, while the system goals facilitate the
construction of more complete and realistic interaction
diagrams.

2) Domain specific goal classes can help ensure better
requirements coverage

The notion of reusable goal classes that occur in various
types of software systems is discussed in [Ant97]. Of
particular relevance to this case study are the goals for an
electronic commerce application, classified according to
subject matter, as reported in [AP98a]. These electronic
commerce goal classes are:

¥ process support goals;

¥ electronic commerce goals;

¥ information display and organization goals; and

¥ security and access control.

Process support goals describe goals that pertain to
system processes enacted by the user or the system.
Electronic commerce goals deal with the base functionality
of the system. Information display and organization goals
describe the organization and presentation of information
by the system. Finally, security and access control goals
describe those goals involved in limiting access to
authorized users [AP98a]. It should be noted that these
categories are not mutually exclusive. The same goal can
be, and often is, classified according to more than of these
goal classes. For example, in the CommerceNet case study,

FIGURE 4: Goal Evolution Diagram

Identified Goals
(292)

Synonymous
Goals (4)

Refined Goals
(192)

Categorized
Goals (130)

ACHIEVE
(55)

ALLOW
(2) ENSURE

(5)

INFORM
(1)

MAKE
(39) NOTIFY

(7)
PROVIDE

(21)

Redundant
Goals (96)

GUI Goals
(70)

Identified Goals
(12)

Synonymous
Goals (4)

the goal <KNOW what user has looked at previously>

was classified as both an information display and an
organization goal as well as a security and access control
goal.

One should expect to have all four of these goal classes
represented in the goal set for any electronic commerce
application. In this study, 120 process support goals were
identified. The large number of process goals is not
surprising given that the authors relied so heavily on the
GUI. The process goals are natural products of this type of
problem decomposition. Each goal from a user action
translated into a process goal. Additionally, each system
response from a user action translated into a different
process goal. We also identified 34 information and
organization goals which were, typically, buried in the pre-
and post-conditions of certain scenarios. More in depth
analysis is still required to determine how the customers
intend to logically organize information within this intranet
application. As expected, we identified a fair number of
electronic commerce goals; the 73 electronic commerce
goals emphasized such items as quotes, shopping carts,
product ordering, notifications and confirmations. The non-
electronic commerce goals described generic system
functions that could be expected in any system.

Interestingly, the SRS does not clarify which types of
users have what kinds of access to the system. Given that
this system is an electronic commerce application, we
found this particularly alarming. There were only 8 security
and access goals identified and these solely considered the
mechanism for user login. This observation suggests that
the availability of goal classes can indeed be very
beneficial when developing the requirements for systems
since the goal classes can help ensure that all expected
behaviors have been considered for the given system. Upon
realizing that we had not derived a sufficient number of
security and access control goals, we were able to further
analyze the various kinds of system users so that the access
levels could be defined.

3) Naming goals according to constraints aids in
maintaining goal context

At times we found it beneficial to include constraint
information in a goal name. For example, the goal
<ACHIEVE quote selected> had different constraints
depending on the context in which the goal was situated.
We refined this general goal by using its constraints to
create the following two goals: <ACHIEVE quote selected

for editing> and <ACHIEVE quote selected for

searching>. The inclusion of this constraint information in
the goal name ensured that we did not lose or forget the
constraint information during goal and scenario analysis
when the auxiliary notes (e.g., constraints, obstacles, pre-
and post-conditions) were not immediately visible. The
system's response to each of these user goals will be
different since selecting to edit will invoke a response such

as displaying editable fields whereas selecting for searching
will require the system to display the results of the search,
with a list of selectable options.

4) Distinguishing between provision of capability and
information goals yields a logical separation of concerns

According to Jackson, separating concerns is simply a
matter of structuring a complex topic as various more
simple topics that can then be considered separately
[Jac95]. Many goals in this case study resembled the kinds
of goals observed in the study reported in [AP98a]; they
involve the provision of certain capabilities and functions
or the provision of information to and from and various
actors. The word PROVIDE is often used indiscriminately
in use cases to express objectives involving furnishing
capability and/or sharing information. It was clear that we
needed a better way to distinguish between these two types
of objectives and we did so by identifying the following
types of goals during the course of this case study:

NOTIFY and INFORM goals involve the delivery or
provision of some information to a given actor. Notification
goals can, for example, involve an e-mail message that is
sent or an error message that is displayed on the screen. In
the electronic commerce and quotation system, the primary
actor delivering the information is typically the system and
the secondary actor, a human user, is the information
recipient. Consider the goal <NOTIFY user that no

matching item exists> ; in this goal the primary actor (the
system) provides the secondary actor (the user) with the
information (that a matching item does indeed exist).
Likewise, the goal <INFORM user of similar quotes>

describes the system goal for providing the user with
information concerning the existence of matching items.

PROVIDE and ALLOW goals encompass some service,
capability or function. Typical services or capabilities
provided by an electronic commerce system include
manipulation of ordering or quotation information, security
services and searching capabilities. For example, the goal
<PROVIDE saving capability> provides a secondary
actor (potentially the user) with the capability to save some
unidentified piece of relevant information to the electronic
commerce system. Likewise, the goal <ALLOW user logged

on> permits the secondary actor (e.g., user) to utilize the
service which monitors access control.

This distinction between provision of capability and
provision of information offers a clear separation of
concerns for allocation of goal responsibilities.

5) A collection of use cases is not a suitable substitute for a
requirements specification

A collection of use cases comprised the greater part of
the electronic commerce and quotation system SRS. As
previously mentioned, the SRS appeared to have been
produced perhaps under some duress as a management
directive. Although such circumstances are unfortunate, it

is not an all together unusual or unheard of occurrence in
many companies today due to increased pressure for
shortened product delivery windows or, for example,
tightened budgets due to moratoriums on spending
influenced by pressure to meet earnings estimates.
Nonetheless, a requirements specification is a necessity and
must comply with standards such as MIL-STD-498 for
government contracts. A software requirements
specification must specify specific requirements as the
conditions for its acceptance, stated with a unique identifier
(for purposes of traceability), in such a way that each
requirement's objective may be later tested. A use case is
not a specific or clear statement of such objectives.
Instead, a use case is a representation which simply
summarizes behavior traces; a use case augments and
clarifies our understanding of the requirements, but a use
case does not a requirement make. What a use case is, is a
valuable tool that aids stakeholders in imagining how a
proposed system will support their work and aids analysts
as they develop a concrete understanding of the customer's
needs and as they identify hidden requirements. The
various available use case representations [AP98b, BRJ99]
are expressive to both practitioners and stakeholders,
allowing stakeholders to clearly relate their experiences to
validate the system requirements and specifications.

Our study gives evidence of software practitioners
adopting a use case collection as a suitable substitute for a
requirements specification. We find this practice
concerning and worthy of focused attention and further
investigation for the above mentioned reasons and given
the specific risks and challenges discussed throughout this
paper.

V. DISCUSSION AND FUTURE WORK
Scenarios are proven to be valuable for eliciting

information about system requirements, communicating
with stakeholders and providing context for requirements
[AMP94, Pot95, PTA94, RSB98, WPJ98]. Although
valuable, scenarios together with their associated use cases,
can be difficult to manage. This explains why scenario
management is receiving increased attention among
researchers in the software engineering community
[AAB99, JBC98, WPJ98]. In this paper, we present our
experiences in the form of challenges faced and lessons
learned while managing a large set of use cases during a
goal-driven requirements specification effort. Most
importantly, we provide evidence of the pitfalls associated
with employing a collection of use cases as a replacement
for a more formal requirements specification.

Our study enabled us to identify a number of helpful
techniques for extending the current heuristics found in the
GBRAM [Ant97]; the study also yielded some rather
interesting observations. These observations led us to
analyze the risks associated with various challenges
encountered during our analysis. We believe these risks,

although not typical software project management risks,
deserve our attention since they can potentially impact
project schedules, costs and ultimately product quality. Our
investigation provided us with the opportunity to further
validate the heuristics provided in [Ant97] and we have
provided several examples of their successful application
throughout this paper (e.g., the consideration of system-
specific goals to determine their underlying intent as well
as the identification and resolution of simple
inconsistencies).

Traceability was both a priority and a challenge
throughout this investigation. We expect to assuage some
of these traceability issues by providing appropriate tool
support for scenario management [AAB99]. We are
currently collaborating with a telecommunications
company, to evaluate requirements management
technologies specifically with respect to how they support
requirements traceability. This work will naturally serve to
ground our findings so that we can appropriately define
guidelines for scenario and episode traceability in our
scenario management tool [AAB99].

Our immediate plans also involve further investigation of
another issue that we have not adequately addressed herein.
It became apparent during our study that the GBRAM
would benefit from the addition of specific heuristics to
guide analysts in identifying, resolving and managing
inconsistencies. To this end, we plan to apply some of the
findings in [vLD98] to further extend and refine the
GBRAM [Ant97] in this way.

Although not discussed in this paper, episodes play a
significant role in effective scenario management [PTA94].
Episodes are sequences of events shared by two or more
scenarios [AAB99]. We can manage episodes by
distinguishing events and recognizing those that are
identical; two events are said to be identical when they
share the same actor and action. Identical event sequences,
or episodes, across multiple use cases was a common
occurrence in this investigation. The SRS authors
frequently reused event sequences applicable to various
situations. For example, one sequence, classified as a
secondary scenario in the SRS, was repeated 17 times
throughout the SRS, causing the analysts to repeatedly
review the same information. Our scenario management
tool, currently under development, will automatically
identify such shared sequences, while providing traceability
across episodes and scenarios.

VI. ACKNOWLEDGEMENTS
The authors wish to thank the sponsors of this project,

the individual stakeholders who participated in goal
elicitation interviews and Thomas Alspaugh for his
comments on drafts of this paper and Michael Rappa for
partial support of this work via the NCSU College of
Management electronic commerce initiative. This research
was made possible due to the co-authors' collaboration with

the sponsor during the Summer of 1999.

REFERENCES
[AAB99] Alspaugh, T.A., A.I. Antón, T. Barnes, and B. Mott. An

Integrated Scenario Management Strategy, International Syposium
on Requirements Engineering (RE'99), Limerick, Ireland, pp. 142-
149, June 1999.

[ALR96] Antón, A.I., E. Liang and R. Rodenstein. A Web-Based
Requirements Analysis Tool, in 5 th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pp. 238-
243, June 1996.

[AMP94] Antón, A.I., W.M. McCracken, and C. Potts. Goal
Decomposition and Scenario Analysis in Business Process
Reengineering, Advanced Information Systems Engineering, 6th

International Conference Proceedings (CaiSE'94), Utrecht, The
Netherlands, pp. 94-104, 6-10 June 1994.

[Ant96] Antón, A.I. Goal-Based Requirements Analysis, International
Conference on Requirements Engineering (ICRE `96), Colorado
Springs, Colorado, USA, pp. 136-144, April 1996.

[Ant97] Antón, A.I. Goal Identification and Refinement in the
Specification of Software-Based Information Systems, Ph.D. Thesis,
Georgia Institute of Technology, Atlanta, GA, June 1997.

[AP98a] Antón, A.I. and C. Potts. The Use of Goals to Surface
Requirements for Evolving Systems, in International Conference on
Software Engineering (ICSE ‘98), Kyoto, Japan, pp. 157-166, 19-25
April 1998.

 [AP98b] Antón, A.I. and C. Potts. A Representational Framework for
Scenarios of Systems Use, Requirements Engineering Journal,
Springer Verlag, 3(3-4), pp. 219-241, 1998.

 [BH98] Hotzblat K. and H. Beyer, Contextual Design., Morgan
Kaufmann, San Francisco, CA, 1998.

 [BI96] Boehm, B. and H. In. Identifying Quality Requirement Conflicts,
IEEE Software, pages 25-35, March 1996.

[BRJ99] Booch, G., J. Rumbaugh and I. Jacobson, The Unified Modeling
Language User Guide, Addison Wesley, 1999.

[BL98] Breitman, K.K. and J.C. Leite. A Framework for Scenario
Evolution, International Conference on Requirements Engineering
(ICRE'98), Colorado Springs, CO, pp. 214-221, 6-10 April 1998.

[Boo94] Booch, G. Object-Oriented Analysis with Applications. 2nd

edition, Benjamin/Cummings, Redwood City, CA, 1994.
[Dav93] Davis, A.M. Software Requirements: Objects, Functions, &

States,. Prentice-Hall, 1993.
 [DP98] D�mges, R., Pohl, K., Adapting Traceability Environments to

Project-Specific Needs, Communications of the ACM, 41(12), pp.
54-62, December 1998.

[DvL93] Dardenne, A., A. van Lamsweerde and S. Fickas. Goal-Directed
Requirements Acquisition, Science of Computer Programming,
20(1-2), pp. 3-50, April 1993.

[EJW95] Embley, D.W., R.B. Jackson and S.N. Woodfield. OO Systems
Analysis: Is it or isn't it?, IEEE Software 12(4), pp. 19-33, July
1995.

[Fow97] Fowler, Martin. UML Distilled: Applying the Standard Object
Modeling Notation, Addison-Wesley, 1997.

 [Jac92] Jacobson, I. et. al. Object-Oriented Software Engineering: A Use
Case Driven Approach, Addison-Wesley, 1992.

[Jac95] Michael Jackson. Software Requirements and Specifications.
Addison-Wesley, 1995.

[JBC98] Jarke, M., X.T. Bui and J.M. Carroll. Scenario Management: An
Interdisciplinary Approach Requirements Engineering Journal,
Springer Verlag, 3(3-4), pp. 154-173, 1998.

[Kar96] Karlson, J. Software Requirements Prioritizing, In Proc. 2nd

International Conference on Requirements Engineering (ICRE ‘96),
pages 110-116, Colorado Springs, Colorado, USA, April 1996.

[KR96] Karlson, J. and K. Ryan. Prioritizing Software Requirements in an
Industrial Setting, In IEEE International Conference on Systems,
Man and Cybernetics, Vol. 2, pages 953-958, 1996.

[Lil99] Lilly, Susan. Use Case Pitfalls: Top 10 Problems from Real
Projects Using Use Cases, Proceedings Technology of Object-
Oriented Languages and Systems, pp.174-183, 1-5 August 1999.

 [MMM98] Maiden, N., S. Minocha, K. Manning and M. Ryan. CREWS-
SAVRE: Systematic Scenario Generation and Use, International
Conference on Requirements Engineering (ICRE'98), pp. 148-155,
April 1998.

[Pot95] Colin Potts. Using Schematic Scenarios to Understand User
Needs, in Symposium on Designing Interactive Systems: Processes,
Practices, Methods and Techniques, pages 247-256, University of
Michigan, Ann Arbor, Michigan, USA, August 1995.

[Pot99] Potts, C. A ScenIC: A Strategy for Inquiry-Driven Requirements
Determination, Proceedings IEEE 4th International Syposium on
Requirements Engineering (RE'99), Limerick, Ireland, 7-11 June
1999.

[PTA94] Potts, C., K. Takahashi, and A. Ant�n. Inquiry-Based
Requirements Analysis, IEEE Software, 11(2), pp. 21-32, March
1994.

[Ram98] Ramesh, B. Factors Influencing Requirements Traceability
Practice, Communications of the ACM, 41(12), pp. 37-44, December
1998.

[RSB98] Rolland, C., C. Souveyet, and C. Ben Achour, Guiding Goal
Modeling Using Scenarios, IEEE Transactions on Software
Engineering, 24(12), pp. 1055-1071, December 1998.

[Rum91] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W.
Lorenzen. Object-Oriented Modeling and design. Prentice-Hall,
Englewood Cliffs, NJ, 1991.

[vLD98] van Lamsweerde, A., Darimont, R., Letier, E. Managing
Conflicts in Goal-driven Requirements Engineering, IEEE
Transactions on Software Engineering, 24(11), pp. 908-926,
November 1998.

[vLDM95] van Lamsweerde, A. and Darimont, R. and Massonet, P. Goal-
Directed Elaboration of Requirements for a Meeting Scheduler:
Problems and Lessons Learnt, Proceedings 2nd International
Symposium on Requirements Engineering (RE`95), York, UK, pp.
194-203, March 1995.

 [WPJ98] Weidenhaupt, K., K. Pohl, M. Jarke and P. Haumer. Scenarios
in System Development: Current Practice, IEEE Software, 15(2),
March/April 1998.

