Essential Use Cases and Responsibility in
Object-Oriented Development

Robert Biddle, James Noble, Ewan Tempero
School of Mathematical and Computing Sciences
Victoria University of Wellington
Wellington, New Zealand
(robert,kjx,ewan)@mcs.vuw.ac.nz

ABSTRACT

Essential use cases are abstract, lightweight, technology-free
dialogues of user intention and system responsibility, that ef-
fectively capture requirements for user interface design. Em-
ploying essential use cases in typical object-oriented devel-
opment processes requires designers to translate them into
conventional use cases, costing time, imposing rework, and
delaying work on the object-oriented development until the
user interface design is complete. We describe how essen-
tial use cases can drive object-oriented development directly,
without any intervening translation, allowing user interface
development and object-oriented development to proceed in
parallel. Working with essential use cases yields some un-
expected further benefits: analysts can take advantage of
recurring patterns in essential use cases, and the crucial
common vocabulary of responsibilities lets designers trace
directly from the essential use cases to the objects in their
design.

1. INTRODUCTION

Use cases are the accepted best practice for capturing re-
quirements for object-oriented software development, and
they are widely supported in modeling languages and in de-
velopment processes. Constantine and Lockwood’s Usage-
Centered Design [9] introduced essential use cases — use
cases written specially to be abstract, lightweight, and tech-
nology-free — to support user interface design. Following
a conventional process, essential use cases would be used
to produce the user interface design, then, once that design
was complete, essential use cases could be translated into
more conventional use cases — much more concrete and
detailed descriptions of a system and its interface design.
Unfortunately, translating essential use cases to a more con-
ventional form requires effort, costs time, and delays work
on the object-oriented development until the user interface
design is complete.

In this paper, we explore the application of essential use

Copyright © Biddle, Noble, Tempero, 2001.

cases directly to object-oriented software development. We
speculated that essential use cases would work just as well as
conventional use cases as a starting point for object-oriented
design; that technology independence could better support
requirements gathering, because there would be less need
to specify details that are only relevant to the design; and
that the brevity of essential use cases would better support
communication between developers and stakeholders.

We began using essential use cases as our prime require-
ments gathering tool. We now suggest that essential use
cases are suitable for object-oriented software development
in general, and indeed have significant advantages over con-
ventional use cases.

We have four general results to report. The first is what
we speculated: that essential use cases can drive object-
oriented design directly, without first writing more concrete
conventional use cases. The other results were unantici-
pated. One is that essential use cases provide practical,
operational guidance on how to move to an object-oriented
design from the requirements. Another is that responsibili-
ties provides a common vocabulary that supports seamless
traceability forwards and backwards between essential use
cases and objects. The last is that, because essential use
cases show only the bare essentials of the use case, we are
able to identify patterns of use cases, which can be used to
make the requirements gathering more efficient.

This paper is organized as follows. We begin with an in-
troduction to essential use cases, discussing their philosophy
as developed by Constantine and Lockwood and comparing
them to conventional use cases. Then, in section 3, we de-
scribe how to write essential use cases, and use role-play to
verify that they are correct and consistent. Section 4 shows
how essential use cases can be used to design object-oriented
systems, reflecting on the role of responsibilities for both es-
sential use cases and object-oriented design, and including
a short example. Section 5 presents patterns for writing es-
sential use cases. Section 6 then discusses some practical
issues such as using essential use cases for systems without
human users, development processes, and business process
design. We then discuss related work in section 7, and finally
present our conclusions.

2. BACKGROUND
2.1 Use Cases

Jacobson defines a use case in his 1992 book as “a behav-
iorally related sequence of transactions in a dialogue with

the system”[17]. A more recent definition for the Rational
Unified Process shows little real change, saying a use case
is “a description of a set or sequence of actions, including
variants, that a system performs that yields an observable
result of value to a particular actor” [16].

The general idea of a use case is to represent intended
sequences of interaction between a system (even if not yet
implemented) and the world outside that system. This idea
is very powerful, for several reasons.

In the early stages of development, use cases help to focus
on interactions as a way of eliciting desirable system behav-
ior, and so help capture requirements and determine spec-
ifications. This technique is effective because interactions
can be described in forms very easy for people to recall or
imagine, such as narratives or dialogues. This is especially
useful when involving a wide range of people in requirements
gathering and analysis, such as end-users, background stake-
holders, and others with no direct experience or role in ac-
tual system development.

In the later stages of development, use cases help again
because of the focus on interactions. The interactions can
now be regarded as the embodiment of specifications that
the system must meet. In design and implementation, a
structure must be determined and created that will meet
these specifications. In review and testing, use cases can be
used to drive system behavior for examination. Their guid-
ing role in design, implementation, and review also assists
in providing traceability.

Use cases also lead to a useful partitioning of require-
ments. This happens naturally, because use cases are based
on sequences of interaction, and desirable interactions typi-
cally follow a structure of coherent progression, on a limited
scale, toward a goal or sub-goal. This partitioning then al-
lows organization by grouping, filtering, prioritizing, and so
on, and is helpful in overall management throughout devel-
opment.

2.2 Essential Use Cases

Essential use cases are part of Usage-Centered Design, as
developed by Larry Constantine and Lucy Lockwood [9].
Constantine and Lockwood support use cases, and agree
with many claims about their advantages. They also see
limitations: “In particular, conventional use cases typically
contain too many built-in assumptions, often hidden or im-
plicit, about the form of the user interface that is yet to be
designed.” This is problematic for UI design both because it
forces design decisions to be made very early, and because it
then embeds these decisions in specifications, making them
difficult to modify or adapt at a later time.

Essential use cases were designed to overcome these prob-
lems. The term “essential” refers to essential models that
“are intended to capture the essence of problems through
technology-free, idealized, and abstract descriptions”. Con-
stantine and Lockwood define an essential use case as fol-
lows:

An essential use case is a structured narrative,
expressed in the language of the application do-
main and of users, comprising a simplified, gen-
eralized, abstract, technology-free and implemen-
tation independent description of one task or in-
teraction that is complete, meaningful, and well-
defined from the point of view of users in some
role or roles in relation to a system and that em-

gettingCash
User Action

System Response

insert card
read magnetic stripe
request PIN
enter PIN
verify PIN
display transaction menu
press key
display account menu
press key

prompt for amount
enter amount
display amount

press key

return card
take card

dispense cash
take cash

Figure 1: A conventional use case for getting cash
from an automatic teller system. (From Constantine
and Lockwood.)

gettingCash

User Intention | System Responsibility
identify self
verify identity
offer choices
choose
dispense cash
take cash

Figure 2: An essential use case for getting cash from
an automatic teller system. (From Constantine and
Lockwood.)

bodies the purpose or intentions underlying the
interaction.

Essential use cases are documented in a format represent-
ing a dialogue between the user and the system. This re-
sembles a two-column format used by Wirfs-Brock [27]. In
Wirfs-Brock’s format, the column labels refer to the action
and the response. In contrast, the essential use case format
labels the columns user intention and system responsibility.

These new labels indicate how essential use cases support
abstraction by allowing the interaction to be documented
without describing the details of the user interface. Note
that the abstraction does not really relate to the use case as
a whole, but more to the steps of the use case. In this way
an essential use case does specify a sequence of interaction,
but a sequence with abstract steps.

Constantine and Lockwood give the examples shown in
figures 1 and 2. The dialogue in figure 1 is for a conventional
use case, described in terms of actions and responses. The
dialogue in figure 2 is for an essential use case, described
in terms of intentions and responsibilities. The steps of the
essential use case are more abstract, and permit a variety
of concrete implementations. It is still easy to follow the
dialogue, however, and the essential use case is shorter.

Jacobson created use cases to support object-oriented soft-
ware design; Constantine and Lockwood introduced essen-

3@4—%;{13 Emimca —
cos \vm% ertficabion
ahow acourts

-stf\c-oée amwn'% I
Shoul bﬂl&wl[(’_

Figure 3: An Essential Use Case Card

tial use cases, and the larger framework of essential model-
ing, for user interface design and development. Qur obser-
vation is that there is actually nothing about essential use
cases that rules out their use for object-oriented software
development, which means their advantages may also apply
in that area.

3. ESSENTIAL USE CASES AND REQUIRE-
MENTS

We began our exploration of essential use cases in object-
oriented software development for practical reasons. We
wanted to improve use case understanding and elaboration
as a team activity. We were familiar with the CRC (class-
responsibility-collaborator) technique for design [4], and de-
cided to develop a similar technique for use case analysis.
Essential use cases brought many characteristics beneficial
in our new technique.

Like CRC, our technique involves using index cards and
role-play. Teams work together to determine candidate use
cases, allocate one card per use case, and write the name
of the use case at the top. Each card is then divided by
a vertical line, with the left hand side for the user and the
right hand side for the system. (See figure 3.) Teams then
work in pairs exploring dialogue, with one person playing
the user, and another playing the system, together writing
the dialogue for the card. Pairs then role-play in front of
the team who review the use case.

Essential use cases are a dialogue between a user and the
system. This facilitates direct use of role-play, as the players
can regard the use case as a script, and one team member
plays the part of the user, and another plays the part of the
system. The dialogue also helps because the the interaction
is very visible. Wirfs-Brock points out that use cases can
easily be seen as a “conversations”, and this familiar form
of interaction assists in the modeling process [28]. This has
the important effect that the use case dialogue and role-play
really help determine the boundary of the system, making
it clear what is done outside and what is done inside the
system.

We have now used this approach working with a number
of development teams, both in industry and at our univer-
sity, and have gained experience about the effects of essential
use cases on aspects of the development process. Essential
use cases are abstract, and this brings many benefits. The
dialogue is brief, and so able to fit on a card, and the ab-

straction can also quicken the analysis process. In discus-
sion and exploration, many specific ideas for interaction will
arise. However, the benefit of abstraction is that no par-
ticular concrete interaction sequence need be determined at
this early point. This allows useful exploration to help de-
termine the essential use case, while avoiding the need to
make time-consuming implementation decisions.

The abstract nature of an essential use case means that
a direct role-play does not yield “realistic” dialogue. How-
ever, role-play in early stages of development needs to be
lightweight, and realism is not critical. If concrete examples
of abstract elements of the dialogue are needed to clarify is-
sues, it can be useful to explore a concrete scenario, referred
to as an “enactment” of the essential use case, representing
a possible implementation.

3.1 User Intention

In essential use cases, the dialogue specifies not simply
the user actions, but the user intentions. The effect of this
quickly became clear in exploring the dialogue through role-
play.

An important aspect of role-play is that people identify
with the role they are playing, and tend to think from that
point of view. The emphasis on intention seems to inten-
sify this effect, because the role player must examine their
motivation more deeply. The need to identify user intention
requires understanding about the kind of person the user is,
and consideration of the situation they are in. With this
encouragement, people playing the user role tend to make
efforts to determine their context, and then really focus on
expressing intent.

Driven by this, the use case role-play becomes more signif-
icant for the other team members or a wider audience. The
strong concern of the user role-player with user intention
makes the role-play evocative. More importantly, reviewers
have more to consider than just the users actions or words:
the issue of intent invites deeper consideration and closer
scrutiny. This makes it easier to evaluate coherence, and
determine whether all the critical elements of the dialogue
have been identified.

Concentrating on the issues beyond the use case is an im-
portant advantage. Use cases focus developer attention on
how a system interacts with the world, and in particular on
how the system is used. In most system development this
usage is not precisely pre-determined, and working out the
use cases requires understanding and creative effort. Es-
sential use cases do focus on usage, but by requiring the
identification of user intention, they also ensure that usage
can be determined on the basis of understanding the users.
In this way, the term “user intention” acts as a heuristic to
guide the specification of the use cases.

In some software development processes, such as the Ra-
tional Unified Process, the user interface prototype is devel-
oped early [16]. This allows the user interface to act as an
input to later system design. This is beneficial because the
development of the user interface will involve work to un-
derstand the users and determine what they need. System
development based on essential use cases will also accom-
plish this, because essential use cases require understanding
of the user intentions. In this way, essential use cases explic-
itly build a concern for the user into the process. Moreover,
this is done in a lightweight way, without the need to gener-
ate actual user interface prototypes, so allowing more rapid

development.

Essential use cases were created with user interfaces in
mind, and the term “user” refers to a human user. When
we began using essential use cases, we accepted this because
our use cases were driven by human users. We later changed
from the term “user” to the term “actor”, following Wirfs-
Brock’s terminology, and also UML.

3.2 System Responsibility

In essential use cases, the dialogue specifies not just sys-
tem response, but system responsibility. Some of the effects
of this arise early, and in a similar but more complex way to
those involving user intention. Other effects become clear
only later in design.

In role-play, the user or actor role often allows identifi-
cation with a known kind of person, thereby allowing some
inspiration about intention. The system role involves iden-
tification with an unknown entity, giving less opportunity
for motivation. It is known that the system should correctly
interact with the user. However, this provides little leverage
in discovering motivation, allowing identification, or deter-
mining desirable interaction.

To gain insight about any element of dialogue, one needs
to consider the purpose beyond it. For the user, essential
use cases employ the term “intention” to denote the pur-
pose. This reflects that nature of the user as external but
understandable, and intention is something we are able to
estimate.

For the system, we must instead describe something inter-
nal to the system which will guide its design. This is what
responsibility is all about: it is an expression of what needs to
be done, without unnecessary detail of how it will be done.
This a more subtle motivation than “intention”, but when
understood it does assist determining the use case, and it
also assists role-play. The motivation for the user is the in-
tention to accomplish goals; the motivation for the system
is the responsibility to fulfill obligations.

Essential use cases harness abstraction to ensure the user
interface is not designed too early, and can be designed to
be independent of any particular user interface technology.
In the user role, the focus on intention supports abstraction
by avoiding the need to decide details of how the intention
is expressed. In the system role, the focus on responsibility
supports abstraction by avoiding the need to decide details
of how the responsibility will be implemented.

Essential use cases do have some user interface heritage
that must be addressed in the context of more general sys-
tem development. In examples of essential use cases em-
ployed to develop user interfaces, the system responsibilities
typically concern presenting some information to the user.
In this way, the system plays its part in the dialogue. How-
ever, in more general system development, the system will
have responsibilities that go deeper. For example, the bank-
ing system essential use case gettingCash shown in figure 2
clearly relates to the user interface, but says little about
responsibilities relating to the accounts and money in the
banking system.

Of course, ordinary use cases may also have this same
weakness. If the use case only documents the dialogue be-
tween the user and the system, important context may not
be obvious. For example, the ordinary use case in figure 1
also says little about the system role relating to accounts
and money.

gettingCash

User Intention | System Responsibility
identify self
verify identity
log transaction start
offer choices
choose
dispense cash
adjust balances
take cash
log transaction finish

Figure 4: An essential use case for getting cash, aug-
mented to show system responsibilities not directing
involved with user communication.

With essential use cases, the focus on responsibility, rather
than response, addresses this limitation. It seems reasonable
to extend essential use case practice, and identify significant
responsibilities that are not directly concerned with com-
municating with the user. For example, consider figure 4,
where the essential use case for gettingCash has been aug-
mented to show system responsibilities beyond communicat-
ing with the user. These do not strictly follow the dialogue
form, although they resemble dramatic “asides” that pre-
cede communication. Most importantly, they add to the
completeness and coherence of the scene, and aid system
development.

4. ESSENTIAL USE CASES AND DESIGN

In object-oriented design, the term “responsibility” al-
ready holds a special role. In particular, responsibility is the
pivotal concept in CRC cards, and in Responsibility-Driven
Design.

In the CRC technique [4], responsibilities are associated
with objects, and identify problems to be solved. Objects
may send messages to other objects in the course of satisfy-
ing responsibilities, and these other objects are designated as
collaborators. The arrangement and delegation of responsi-
bilities and collaborators is then iteratively adjusted through
many versions until a satisfactory structure emerges. In this
way, responsibility guides the articulation of a system by
partitioning classes to distribute responsibility. While CRC
may have been originally cast as a pedagogical tool, it is now
seen as useful in the context of practical system development
[24, 5].

In responsibility-driven design [25, 26], the idea of re-
sponsibility is used more thoroughly and on a larger scale.
Responsibilities are associated with objects, and represent
knowledge an object maintains, or actions an object can
perform. Responsibilities thus emphasize abstract behavior
while being silent about possible implementation structure.
However, objects may fulfill responsibilities by collaborating
with other objects through message sending, and responsi-
bilities may also be factored to higher level abstract classes.
Together, such principles lead to designs where responsibil-
ities are apportioned at high levels of abstraction, without
any mention of object implementation.

The basic idea of “responsibility” seems to be the same
in both CRC and responsibility-driven design, and the ways
in which it is used seem consistent. Both techniques sug-
gest that every object should have a coherent and well-

understood set of responsibilities, and involve the concept
of distributing responsibility sensibly as a guide to making
design decisions. In essence, both use responsibility as a de-
sign heuristic. A basic principle of object-oriented design is
that objects involve behavior and information that work to-
gether. Responsibility is good heuristic for determining this,
because the word “respomnsibility” suggests both a duty to do
something, and the resources with which to do it. Responsi-
bility also allows delegation, allowing large responsibilities to
be managed by delegating smaller responsibilities to others.
Responsibility involves both abstraction and encapsulation,
as Wirfs-Brock et al.[25] explain:

The responsibility-driven approach emphasizes the
encapsulation of both the structure and behavior
of objects. By focusing on the contractual respon-
sibilities of a class, the designer is able to post-
pone implementation considerations until the im-
plementation phase.

In essential use cases, the idea of a responsibility is to
identify what the system must do to support the use case,
without making commitments as to how it will actually be
done. This resembles object encapsulation, where the inter-
nals of an object cannot be directly accessed from outside,
and has similar benefits.

This role of responsibility in use cases is entirely consis-
tent with the role of responsibility in design. Both describe
behavior without describing implementation. This common-
ality presents valuable opportunities to link the way we work
when determining requirements and the way we work when
determining design.

4.1 Determining the System Boundary

In our experience, a major issue in determining require-
ments is distinguishing what the system should do from
what it should not do. It often difficult to make decisions
about this boundary, but it is also often difficult to commu-
nicate about this issue with all the people involved, analysts
and stakeholders. We have found that it is very helpful to
apply an approach familiar in design. We present the system
as a “black-box”, with an explicit boundary, describing the
behavior of the system by essential use case responsibilities.

We can regard the system as a single system object, with
a set of responsibilities like any object, and an implemen-
tation not yet under consideration. Jacobson [17] proposes
a similar idea, but takes it in a different direction. With
essential use cases, we can use the responsibilities to help
determine the boundary of the system. If the system is like
a single object, then the use cases are like methods of this
object. They allow access to the system behavior, and no
other access is possible. The interaction in a use case resem-
bles method parameters and return values, but managed in
a sequential way.

We have found use case diagrams useful in reinforcing this
idea. We use a form of the use case diagram that, as in UML
[23], shows actors (as stick figures) and their involvement
with use cases (as ellipses). We also explicitly show the sys-
tem boundary, depicted as a box surrounding the use cases,
with the lines between the actors and the use cases crossing
the boundary, as shown in figure 5. This clearly separates
the actor’s intention from the system’s responsibility. This
convention of showing the system boundary in use case di-
agrams was used by Jacobsen [17] but does not typically

Banking System
Teller ’w

Auditor

ATM
User

Figure 5: A use case diagram, explicitly showing the
boundary around the system object.

feature in use of UML or in the Rational Unified Process
[16]. We have found it worthwhile, consistent with the idea
of the system as an object, and helpful in resolving issues
about determining the boundary of system responsibilities.

4.2 Use Case Responsibilities and Design

For any particular system, the responsibilities in the es-
sential use cases must be strongly related to the responsi-
bilities of the objects internal to the system. Essential use
case responsibilities must reflect the behavior of the overall
system, and the object responsibilities must together reflect
the same behavior.

This focus on responsibility in both essential use cases and
in design suggests a way in which to strongly link system
requirements and system design. The responsibilities from
the essential use cases can be used as a starting-point for
system design. This provides positive operational guidance
when beginning design, and later leads to explicit traceabil-
ity from the design back to the use cases.

To begin design we can start with a set of essential use
cases, and the responsibilities they describe for the system
object. We can then consolidate these where possible by us-
ing consistent language. Design work can then begin, which
will determine a set of collaborating objects that will to-
gether meet these same responsibilities.

A strict approach to design might begin just with the
system object and work from there by identifying related
responsibilities and creating classes with those responsibili-
ties. This approach could then be continued carefully, dis-
tributing responsibilities and eventually determining a de-
sign. This approach is essentially the same as refactoring,
primarily discussed as a technique for improving the design
of existing code [11]. Some of the refactoring techniques
can easily be applied just to designs: for example Extract
Class is a common technique applied in the early stages of
the design process.

We do not advocate such a strict approach. One reason is
that it does not harness any domain model. This will likely
lead to difficulty in creating a correspondence between the
domain model and the design, and thus fail to deliver the ad-
vantages of understandability and maintainability that are
associated with that correspondence. Another reason is that
a complete system may have many use cases and responsibil-
ities, making a strict decomposition very difficult. Finally, a
strict approach would make it difficult to allow consideration
of design structures that arise from elsewhere.

In CRC or responsibility-driven design, design begins with
finding a set of key candidate objects and classes, on the ba-
sis of a model of the application domain. Initial responsibil-
ities are then assigned to these objects and classes, typically
informed by knowledge of the domain and by design heuris-
tics. This yields an initial design which can be explored and
improved iteratively by with a small set of focal use cases.

Essential use cases do not require change in either CRC
or responsibility-driven design. However, the responsibili-
ties from essential use cases can play a helpful role. In both
CRC and responsibility-driven design, there is a significant
element of rapid exploratory design consideration. At signif-
icant points in the design process, the ability to check object
responsibilities with use case responsibilities presents a valu-
able way of checking to see whether a design still meets the
requirements.

One such significant point is at the beginning of the de-
sign. When assigning initial responsibilities, consideration
can be given to the responsibilities required by the use cases.
Alternatively, the initial design responsibilities might still be
created from domain knowledge. These can then be com-
pared with those from the essential use cases, and can give
us valuable early feedback, and allow us to avoid future dif-
ficulties that may otherwise result. This approach provides
better guidance for designers at a critical point in system
development.

Design is rarely undertaken in a void, and there are typ-
ically many existing design assets that can be reused as
part of any new design. For example, there may well be
legacy components, component libraries, frameworks, or de-
sign patterns. Even where these are themselves already im-
plemented, harnessing them may well affect the system de-
sign. As with the alternatives that arise in exploration, the
responsibilities from essential use cases provide a valuable
way to check how the resulting design matches the require-
ments.

Unlike alternatives from CRC or responsibility-driven de-
sign, however, other design structures may not come with
responsibilities already identified. The comparison is then
more arduous, and will involve careful examination of com-
ponents and other structures. Even where the assets are
actually implemented already, it is not the implementation
that must be examined, but more the behavior: in fact the
responsibilities. 'We believe such care and examination is
valuable, and ultimately unavoidable to facilitate successful
reuse.

When a discrepancy between use case and design respon-
sibilities is detected, there are several avenues of resolution.
The design may have gaps, either unintended or simply a re-
flection of temporary priorities in design activity. In either
case, the design should be improved. On the other hand,
there are sometimes important advantages to designs even
if they fail to meet some requirements. For example, the
design may be based on valuable existing artifacts that fall
slightly short of requirements. In such cases, it may be rea-
sonable to revisit to the use cases, and explore whether they
should be changed in order to allow use of the design assets.

In all these situations, the ultimate aim is the same: con-
sistency between requirements and design. By using respon-
sibilities in requirements and in design, our approach also
leads to a significant improvement in traceability.

4.3 Example

In this section, we present a small example to illustrate
how our approach works. This design is for a small part of a
library system. The domain model consists of two classes of
objects: books and borrowers. Figure 6 shows the sequence
of steps. At the top, we have identified the two focal use
cases: borrowing and returning a book.

Consolidating the system responsibilities of just these two
essential use cases results in a system object, which we show
as a CRC card (marked “Iteration 1”). It is important to
be aware that not all responsibilities of the system object
will be explicit at this point. For example, in order that
the system verify that the book may be borrowed, the sys-
tem has the implicit responsibility to record what books are
borrowed. Implicit responsibilities will typically be identi-
fied when they are distributed to the collaborating objects.

While the system object must clearly be able to enact the
two use cases, if we had more use cases the resulting object
would be large and unwieldy to implement. Considering
the domain model, we could construct a design using three
classes, a singleton Library System class, a Book class (one
instance per book) and a Borrower class (one instance per
borrower). We now need to decide how the responsibilities
are distributed between the classes.

Iteration 2 shows the CRC cards for this design. There
are several points we should note. For example, the im-
plicit responsibility of recording whether or not a book has
been borrowed has now been made explicit, and delegated to
the Book class. Furthermore, the responsibility of updating
whether or not the book has been borrowed has also been
moved to the Book class. Note however that the Library
System still has the responsibility of initiating the check
and record update, which together may be regarded as the
responsibility to issue the book.

The Library System has also acquired another responsi-
bility that was not apparent in the original system object,
that of “knowing all books”, that is, being able to locate a
Book instance given its identity (such as call mark). This
responsibility has become important because we have cre-
ated the Book class, and so the Library System must now
become responsible for managing the Book instances. The
situation with Borrower is similar.

Further consideration of the design could see the “know-
ing all books” responsibility moved into a separate single-
ton Catalogue class, perhaps implemented with a standard
Collection object (Iteration 3, with the Book and Borrower
classes unchanged).

One final point to make with this example is that we have
only listed responsibilities as identified by the use cases. In
reality, when we develop the domain model we will usually
identify other responsibilities that the classes are likely to
have. This information would also feed into the process de-
scribed above. For example, recording whether or not a
book is borrowed is a responsibility very likely to be identi-
fied from the domain analysis.

As the figure shows, tracing the responsibilities from the
requirements through to the different designs is not only
straightforward, but naturally falls out of the design deci-
sion making process. This is useful for communicating with
stakeholders, and in particular when carrying out reviews.

ESSENTIAL USE CASES

borrowingBook

returningBook

User Intention System Responsibility User Intention System Responsibility
identify self identify self
verify borrower id verify borrower id
identify book identify book
verify that book may
borrowed record book as returned
recor Sissued by borrower
to borrower
CRC CARDS .
ITERATION 1 System Object
verify borrower id
verify that book may D
a - ﬂ%
e record book as issué
e Loborower P
| / record book as returned
kl by borrower
\
ITERATION 2 ~.
. ~ .
Library System I s Borrower
. ’ ~ .
Borrower AN
N
N
Book NN
VN,
N
o
. \.
! \
! [
7 -
\ Book ' k4
\ 1,
\ borro >d;~/
N N issue myself to borrower
\ return myself
AN
AN
AN
N
N
AN
N
AN
~N
ITERATION 3 A
N
Library System S o Catalogue
. . =~ ~ L—1
verity borrower id Borrower A<\ know all books __> | Book
issue book to borrower
know all borrowers Book
Catalogue

Figure 6: Tracing responsibilities from essential use cases to design.

5. PATTERNS OF USE CASES

While writing and designing software using essential use
cases, we noticed that particular sequences of user intentions
and system responsibilities reoccurred, both within single
systems, and, more importantly across systems as differ-
ent as network help systems, supermarket stocktaking, and
micro-controller programming environments. Importantly
we did not write the use case models for the majority of
these systems ourselves.

As we investigated these recurring sequences in use case
bodies, we realized that they represented solutions to par-
ticular problems in use case modeling: the sequences were
common because they provided solutions to common prob-
lems in modeling the interfaces of systems to the actors sur-
rounding them, that is, to the world outside. Following
other patterns work [10, 12], we then identified (or “mined”
in patterns terminology) a series of patterns for essential use
cases [6].

To move from descriptions of repeating use case sequences
to patterns, we also analyzed the forces acting in the use
case, that is, the important considerations impacting on
the use case [1]. For essential use case patterns, the forces
capture characteristics of the interaction between actor and
system: issues of initiative, information flow, and usability,
such as preferring selection (from menus) over memory (for
obscure command names), and promoting safety by requir-
ing confirmation of irreversible actions. Each pattern gives
positive and negative consequences of in terms of some of
these forces.

These essential use case patterns are philosophically closer
to Analysis Patterns [10] than they are to Design Patterns
[12] or other user interface patterns [13, 7]. Like Analysis
Patterns, these patterns describe analysis artifacts, rather
that object-oriented designs or user interface designs for
completed systems. Essential use case patterns describe pat-
terns in essential use cases — that is, characteristic dialogues
of user intention and system responsibility — while Analysis
Patterns describe patterns in business domain models.

5.1 Some example use case patterns

We have identified at least 18 use case patterns overall,
and space does not permit us to include them all in this
paper [6]. Figure 5.1 presents a précis of one of the first pat-
terns we identified, the Alarm Use Case Pattern. The
problem this pattern addresses is to write an essential use
case to model an interaction where the system needs to no-
tify an actor about an important event, such as a change
in its internal state or a potential violation of an internal
invariant or business rule. The full pattern form includes
rather more discussion, more variants, and a list of known
uses: all of which have been elided in the figure.

The key to this pattern is that the essential use case to
model this interaction begins with the system’s responsibil-
ity to signal the user, rather than beginning with a user’s
intention to trigger some kind of alarm: in the first exam-
ple in the figure (to warn of an undersold performance in a
theater) this is the only step in the use case. While perhaps
straightforward in retrospect, our experience teaching and
working with essential use cases is that use cases following
this pattern are counterintuitive at first sight: it is not obvi-
ous that a use case can simply involve the system’s respon-
sibility for communicating some information to an action,
without any requirement for the actor to initiate or confirm

Alarm Use Case

How do you have the system inform the user about some-
thing?

Forces

e The system needs to draw actor’s attention to a change
in its internal state.

e The system is about to break a business rule.

e The notification should be asynchronous, that is, ac-
tors should not have to trigger the use case.

Therefore: Write a use case that begins with the system
taking the responsibility to warn the user.

Example

Warning Start of Performance
User Intention | System Responsibility

Signal “performance about
to start”

Show name, theater, and
times of performance

Consequences

+ The system takes responsibility for initiating the use
case.

+ The system can pass information about the alarm to
the actor.

+ The actor does not have to interrupt their current task
immediately to respond to the alarm.

- The actor can ignore the alarm.

Variant

If the alarm is important, you may need to include a Con-
firming Step:

Warning Theater Performance Undersold
User Intention | System Responsibility

Signal “performance un-
dersold”

Show name, theater, time
or performance, and per-
centage of seats sold

Confirm warning

This variant has the following different consequences to the
main pattern:

- The actor cannot continue with their current task:
they must interrupt it to confirm the alarm.
+ The actor cannot ignore the alarm.

Figure 7: A pattern for alarms

Prompting Step

How should you write a use case when the system knows
some information that would help an actor make a decision?

Forces

e The system knows information that the actor may not
know.

e Even if the actor knows all the information in the sys-
tem, they may not know which information will be
applicable at any given time.

e For human actors, making choices is easier than re-
membering commands or internal codes.

e For system actors, receiving current information from
the system is easier than them having to maintain du-
plicate copies of that information.

Therefore: Give the system the responsibility of offering
that information before the actor makes the decision.

Example

Booking Seats in Performance
User Intention | System Responsibility
Offer Unbooked Seats

Choose Seats

Consequences

+ The actor does not have to remember or store infor-
mation that is known to the system.

- The interaction will be less efficient because the system
has to present more information to the user.

Figure 8: A pattern for prompting actors

that information. Early in our essential use case modeling
work we came across several examples that clearly fit this
pattern, and generally chose to tolerate them grudgingly.
Further experience seeing more examples of this kind of in-
teraction lead us to realize that these interactions could all
be modeled using this pattern.

Subsequently, we have seen this pattern appearing in many
use cases for a wide variety of systems: to provide warnings
that a new program will overwrite the current contents of a
programmable logic controller; to advise a stockroom that
a supermarket shelf is running low and should be restocked
from the warehouse; and to notify users when they have new
mail, to give just three examples.

The alarm pattern also illustrates the move from System
Response in Wirfs-Brock’s two-column use cases to System
Responsibility in Constantine’s (and our) essential use cases:
a response requires some prior user interaction to which it
can respond, while a responsibility includes both initiating
and responding to communication with actors.

The figure also shows a variant of the alarm pattern:
where it is important that the actor confirm receipt of the
alarm, the use case can be written to capture the actor’s
intention with an extra, explicit, confirmation step. As the
figure explains, this variant pattern resolves the forces in
the use case in a slightly different way: the alarm cannot

be ignored, but it will be more intrusive, interrupting the
current task by requiring the actor to confirm it explicitly.
Microsoft Windows’ “hard disk full” can be seen as an im-
plementation of this variant pattern: when a machine’s disk
is full, the system warns the user of this fact, and expects
confirmation that the warning has been received.

Figure 5.1 gives another example of a similar pattern —
the Prompting Step Pattern — where the actor intends
to make a decision, the system can supply that actor with
up-to-date information before the decision is made, thus re-
moving the responsibility to remember, store, or track the
information maintained by the system. Although more in-
tuitive than the alarm pattern, the prompting step pattern
has also been useful to analysts writing essential use cases,
to determine whether (or not) to include a prompting step
in their models.

5.2 Patterns and Responsibilities

As with all types of patterns, we do not claim the designs
or analyses behind these patterns are novel — rather, we
have identified each of these patterns in at least three sepa-
rate systems: systems that were completed before we began
investigating patterns systematically. We hope that none of
these patterns will come as any surprise to those experienced
with writing any form of use cases. We have, however, found
that these simple patterns extremely useful to people have
identified an interaction as a potential use case, but do not
known how best to actually write the essential use case to
represent that interaction.

None of these patterns are specific to essential use cases
— there are obvious analogues for conventional forms of use
cases. We do not claim that these patterns could not be
developed by examining conventional use cases, although
no such patterns have yet been identified to our knowledge.
We do believe, however, that these patterns would not be
anywhere nearly as obvious written with a conventional use
cases forms, because the amount of information and the
length of the more conventional forms would make analy-
sis significantly harder than with essential use cases.

In terms of identifying patterns, the key advantage of es-
sential use cases is precisely that they focus on the essential,
abstract nature of the interaction between an actor and a
system, and characterize a system’s interface without de-
scribing the implementation of that interface in detail. This
is clearly useful for user interface design: this paper argues
that this is useful in object-oriented design more generally.
This is precisely the kind of information that you need to rec-
ognize or use patterns: to quote Gamma et. al.: “A design
pattern names, abstracts, and identifies the key aspects of a
common design structure The design pattern identifies
... the distribution of responsibilities.”. In the same way, an
essential use case abstracts and identities the key aspects
of an interaction between an actor and a system — the se-
quence of user intentions and system responsibilities. The
presentation of these use case patterns is simplified by hav-
ing to only discuss the minimal details associated with es-
sential use cases, making the patterns easier to understand,
in much the same way that the presentation of a design pat-
tern concentrates primarily on objects, their relationships,
and their important responsibilities, rather than the low-
level details of the code that will be needed to implement
the pattern.

6. DISCUSSION

In this section we discuss a number of issues related to
essential use cases and responsibilities in object-oriented de-
sign: applications to systems without user interfaces (such
as embedded or real-time systems); to systems with set, pre-
defined user interfaces; iterative and incremental processes;
parallel development of user interfaces and applications; and
the object-oriented design of business processes.

6.1 Systems without User Interfaces

The approach we have outlined, based on essential use
cases and object responsibilities, is quite applicable even to
those systems without a traditional user interface, such as
embedded systems, or software engines that interact only
with system actors.

The key point here is that any system has to interact with
the “outside world”. For any system, it is important to de-
termine the boundaries between the interior and exterior of
the system; to determine the principal interactions between
the system’s actors (human or machine); and to characterize
those interactions in a way that facilitates later design. We
have found that essential use cases retain most of the same
benefits for these kind of systems (or rather, these kind of
interfaces to systems) as they do when used to describe user
interfaces: by working at the right level of abstraction, they
capture the essence of the actors intentions and system re-
sponsibilities while eliding the accidental details of syntax
and implementation. As we have described, essential use
cases are smaller (and thus quicker to write, review, and
modify) than longer, more detailed use cases, and facilitate
system responsibilities flowing seamlessly from analysis to
design: all these benefits apply equally to interactions with
system actors as well as with human users.

Real-time systems often impose non-functional constraints
(response time, transaction rate, information volume, relia-
bility) upon their use cases. When using more conventional
use cases, such constraints can be associated with the use
cases narratives, and managed along with them. Manag-
ing these constraints is orthogonal to the way use cases are
structured, and this information can be handled in much the
same way when using essential use cases. Usage-Centered
Design [9], for example, has always associated this kind of
property with essential use cases, since they are crucial to
the design of high-performance user interfaces.

The traceability between the system responsibilities of the
essential use cases, the consequent responsibilities of the sys-
tem object, and the resulting responsibilities of the internal
objects making up the system design is also beneficial in en-
suring the system does meet such non-functional constraints.
For example, the system-level constraints (on use cases) can
be propagated forwards with their responsibilities to objects
during design, and objects’ non-functional performance can
be tracked backwards via their responsibilities to the use
cases. Either way, the explicit traceability gained by using a
common notion of responsibility can be used to verify that
such non-functional constraints can be met in a final design.

6.2 Systems with Set Interfaces

Although originally developed to design user interfaces,
we have found that essential use cases can be used for the
object-oriented design of systems even when the interface
is fixed in advance — either because the user interface de-
sign has been completed, or because the only interfaces are

to other system actors via existing protocols. To design
systems with these interfaces, we begin by analyzing the in-
terfaces and writing essential use cases to describe their in-
teractions, and then we develop the object-oriented design
from these use cases. This allows us to capture most of the
benefits we have outlined — in particular, we can design the
system focusing on the essential parts of the interactions, es-
pecially the system responsibilities — and also gives some
confidence that the internal system design will be stable in
the face of changes to the details of these interfaces.

6.3 Designing Business Processes

Conventional use cases have long been advocated for busi-
ness process design as well as software design [15]. Such
designs typically begin with use cases specially written to
describe business process interactions — that is interactions
between people or business units rather than people inter-
acting with computer systems.

Essential use cases are technology free: they describe the
abstract intentions and responsibilities in a use case, and so
any given use case can be implemented in a range of interface
technologies. This is practically useful: exactly the same es-
sential use cases can be reused where one system has more
than one interface (for example, as a desktop application for
a call center, a web site, and an interactive voice-response
system). This also means, however, that they can character-
ize designs using no technology — that is, business processes
— as well as designs based on intensive computational sup-
port.

We have had some experience with applying essential use
cases and system responsibilities to business processes de-
sign and have been successful: the same advantages of ab-
straction, dialogues, and common responsibilities accrue to
business process design as to software design.

6.4 Development Processes

In this paper, we have primarily described the models that
we build for software design, and have made only passing
references to the process by which those models are con-
structed. It is important to understand that although infor-
mation conceptually flows through the models from essen-
tial use cases to the system object and then into the inter-
nal object-oriented design, we are describing a philosophical
view of the relationships between these design models, and
not a temporal or process view of the way the models should
be constructed. In particular, we do not practice or advocate
a waterfall approach, beginning with essential use cases for
“analysis”, then making sure they are “complete” and “cor-
rect” before proceeding onto the next phase of “design”, and
S0 on.

Rather, we expect that the design process will be incre-
mental and iterative: starting by coming up with a list of
candidate use cases, and developing a rough domain model
in parallel. Then, some focal use cases could be elaborated,
identifying user intentions and system responsibilities and
writing them onto use case cards. An initial design could
be developed for these use cases, resulting in responsibilities
being tracked backwards from objects and the wording of
the use cases being refined. Then more use cases could be
elaborated, more object modeling attempted, existing work
revisited in the light of later developments, and so on, as is
accepted good practice.

We have found that using essential use cases and respon-

sibilities throughout the whole design iterative development
rather than hindering it. Common levels of abstraction and
a common vocabulary between use cases and objects make
it easier to work either forwards or backwards during an
iteration, tracing use cases to objects or vice versa. This
also makes it easier to answer the frequently-asked question
about when a design is complete [20]: the design is done
when all the use cases and objects use the same vocabulary,
when all the system responsibilities have been delegated to
internal objects within the design, and when every use case
can be executed by the object model.

6.5 Parallel Development

Basing a system’s internal object-oriented design upon es-
sential use cases has several advantages when a user interface
is also being designed using essential use cases, typically via
Usage-Centered Design. Duplication of work can be avoided:
the essential use cases developed for the user interface design
can be reused directly by the software designers, without
having to be recast into other, more detailed forms of use
case. This allows user interface design and software design
to proceed in parallel, both working from the same essential
use cases.

This is in contrast to the serial approach taken in many
formal processes (RUP in particular [16]) where user inter-
face design is performed early, in the inception phase, and
that user interface design is then input into a later software
design phase. Followed strictly, the serial approach delays
software design until the user interface design is complete:
for large, user interface intensive projects this can add sev-
eral months to the time frame of the whole project.

Parallel design is particularly useful for web development,
as the front-end interface can be designed separately from
the back-end server software: each could be outsourced to
different vendors with suitable expertise. Such parallel de-
velopment does require some kind of iterative project man-
agement to coordinate changes and elaborations to the use
cases as each design proceeds.

7. RELATED WORK

Improving software development is ongoing research by
many people. Here, we concentrate on how these various
efforts deal with the requirements-design nexus.

Object-Oriented Software Engineering (OOSE) provides
some advice on how to relate objects in an object model to
use cases [17]. Specifically Jacobson et al. describe how to
develop an analysis model by identifying the Interface (now
generally referred to as Boundary), Control, and Entity ob-
jects needed to realize the use case. While this is useful
advice, it does require some interpretation to follow, par-
ticularly in assigning behavior to the resulting classes. Our
approach is more operational in this regard.

As others before us have have observed, use cases are a
convenient way to organize the requirements to better match
an object-oriented design [18]. As we discussed in section
2, Jacobson introduced the use case concept [17] and Con-
stantine and Lockwood developed essential use cases as a
modification of this original idea for use in user interface de-
sign [9]. There has been much more written about use cases
and their use in software development. Cockburn’s recent
book provides a detailed account of how to write use cases,
and includes a good summary of the different styles of use
cases [8]. Armour and Miller discuss how use cases can be

discovered and managed as part of the requirements gath-
ering process[2]. However, these works say little on how the
use cases are then fed into the analysis and design phases.
Discussions that do relate use cases to design generally advo-
cate the development of domain models (for example [22]).
The domain model then provides the first step in the de-
velopment of the design. We believe the development of
a domain model is important, as we have discussed above.
But, we believe there is still a large step between identifying
the requirements and determining how the domain model
satisfies those requirements.

The importance of traceability is widely discussed in the
literature. Pfleeger identifies both vertical and horizontal
forms of traceability [21]. Vertical traceability refers to iden-
tifying relationships within models in the development pro-
cess, whereas horizontal traceability refers to relationships
between models. There is practical evidence to show that
emphasizing traceability does improve the quality of aspects
of the software development process and reduces mainte-
nance costs [19].

Our work addresses the horizontal traceability between
requirements and design artifacts. In our approach, the re-
lationships between the requirements and the design cor-
respond directly to the decisions on how to distribute the
responsibilities. This means that the traceability is ensured
as part of the design process.

Any software development effort follows some kind of over-
all process. One of the most talked about processes of late
is the Rational Unified Process (RUP) [16]. RUP is a use
case driven process, meaning use cases impact each phase
of the process. Use cases are as important to our approach
as they are to RUP. We differ in the choice of form of use
case. Our use of essential use cases is not inconsistent with
any of the RUP descriptions, and in fact can be regarded
as a refinement of the Analysis and Design work-flow. This
work-flow is based on OOSE, which we addressed above.

Another software development process is OPEN (more ac-
curately, a framework for software development methods,
but we concentrate on the process part of it). Of particu-
lar interest is the OPEN Toolbox of Techniques [14], which
provides a comprehensive survey of techniques that can be
used to accomplish various tasks needed for software devel-
opment. There are several techniques the can be used to
produce a design model from the initial requirements, in-
cluding: Collaborations Analysis, CRC card modeling, Del-
egation Analysis, Domain analysis, Generalization and in-
heritance identification, and Transformations of the object
model. Any of these techniques can be used in conjunc-
tion with our approach, and again, the key contribution of
our approach is more operational guidance and the direct
provision of traceability.

Recently there has been a lot of interest in lightweight pro-
cesses such as Extreme Programming (XP) [3]. XP’s rules
on design include keeping the design as simple as possible
for the required functionality, and not adding functionality
before it is needed. XP is a strongly incremental process
that takes individual “user stories” (like use cases but writ-
ten completely concretely) and then incrementally refactor-
ing an extant program to implement those use cases. Some
parts of the underlying dynamic of our approach and XP are
similar, such as the idea that all design can be seen as refac-
toring. In XP, design happens when the minimal program is
extended to support a new use case, then refactored so that

it is well designed. In our approach, the design begins with
a complete system object that is imagined to implement the
entire program, and all refactorings preserve the responsi-
bilities of this object and simply redistribute them amongst
its internal components.

8. CONCLUSIONS

Use cases are seen as beneficial in many aspects of system
development, and the refinement of essential use cases was
originally made to address needs in user interface design.
We have explored the application of essential use cases in
object-oriented system development, and in this paper have
reported on our findings.

Essential use cases strike the right level of abstraction to
facilitate simple and rapid progress in determining require-
ments. They support communication well through role-
play, and help to determine system boundaries. They are
brief, easy to learn, and can be developed quickly because
they avoid unnecessary debate about implementation de-
tails. They also make it easy to detect use case patterns.
The level of abstraction works well for both user interface
and system design, and allows the two to proceed in parallel.

Essential use cases identify system responsibilities, and
these responsibilities can play an empowering role in linking
requirements to object-oriented design. In design, respon-
sibility is often used as a heuristic to apportion abstract
behavior among collaborating objects. Using essential use
cases to identify requirements, together with a responsibility-
driven approach to design, leads both to better operational
guidance in design, and explicit traceability between design
and requirements.

9. REFERENCES

[1] Christopher Alexander. The Timeless Way of
Building. Oxford University Press, 1979.

[2] Frank Armour and Granville Miller. Advanced Use
Case Modeling: Software Systems, Volume 1.
Addison-Wesley, 2001.

[3] Kent Beck. Embracing change with extreme
programming. IEEE Computer, 32(10):70-77, October
1999.

[4] Kent Beck and Ward Cunningham. A laboratory for
teaching object-oriented thinking. In Proc. of
OOPSLA-89: ACM Conference on Object-Oriented
Programming Systems Languages and Applications,
pages 1-6, 1989.

[5] David Bellin and Susan Suchman Simone. The CRC
Card Book. Addison-Wesley, 1997.

[6] Robert Biddle, James Noble, and Ewan Tempero.
Patterns for essential use cases. In Proceedings of
KoalaPLoP 2001, 2001. To appear.

[7] Marc Bradac and Becky Fletcher. A pattern language
for developing form style windows. In Robert Martin,
Dirk Riehle, and Frank Buschmann, editors, Pattern
Languages of Program Design, volume 3, pages
347-358. Addison-Wesley, 1988.

[8] Alistair Cockburn. Writing effective use cases.
Addison-Wesley, 2001.

[9] Larry L. Constantine and Lucy A. D. Lockwood.
Software for Use: A Practical Guide to the Models
and Methods of Usage Centered Design.
Addison-Wesley, 1999.

[10] Martin Fowler. Analysis Patterns. Addison-Wesley,
1997.

[11] Martin Fowler. Refactoring: Improving the Design of
Ezisting Code. Addison-Wesley, 1999.

[12] Erich Gamma, Richard Helm, Ralph E. Johnson, and
John Vlissides. Design Patterns. Addison-Wesley,
1994.

[13] Neil Harrison, Brian Foote, and Hans Rohnert, editors.
Pattern Languages of Program Design, volume 4,
chapter Part 7: Patterns of Human-Computer
Interaction, pages 445-593. Addison-Wesley, 2000.

[14] Brian Henderson-Sellers, Anthony Simons, and
Houman Younessi. The OPEN toolboz of techniques.
Addison-Wesley, 1998.

[15] Ivar Jacobson. The Object Advantage : Business
Process Reengineering With Object Technology.
Addison-Wesley, 1995.

[16] Ivar Jacobson, Grady Booch, and James Rumbaugh.
The Unified Software Development Process.
Addison-Wesley, 1999.

[17] Ivar Jacobson, Mahnus Christerson, Patrik Jonsson,
and Gunnar Overgaard. Object-Oriented Software
Engineering. Addison-Wesley, 1992.

[18] Dean Leffingwell and Don Widrig. Managing Software
Requirements: A Unified Approach. Addison-Wesley,
2000.

[19] Mikael Lindvall and Kristian Sandahl. Practical
implications of traceability. Software—Practice and
Ezperience, 26(10):1161-1180, October 1996.

[20] Pete McBreen. When are use cases done? OOTips web
site at http://ootips.org/use-cases-done.html,
January 1998.

[21] Shari Lawrence Pfleeger. Software Engineering:
Theory and Practice. Prentice Hall, 1998.

[22] Doug Rosenberg and Kendall Scott. Use case driven
object modeling with UML: A practical approach.
Addison-Wesley, 1999.

[23] James Rumbaugh, Ivar Jacobson, and Grady Booch.
The Unified Modeling Language Reference Manual.
Addison-Wesley, 1998.

[24] Nancy Wilkinson. Using CRC Cards - An Informal
Approach to OO Development. Cambridge University
Press, 1996.

[25] Rebecca Wirfs-Brock and Brian Wilkerson.
Object-oriented design: A responsibility-driven
approach. In Norman Meyrowitz, editor, Proc. of
OOPSLA-89: ACM Conference on Object-Oriented
Programming Systems Languages and Applications,
pages 71-75, 1989.

[26] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren
Wiener. Designing Object Oriented Software. Prentice
Hall, 1990.

[27] Rebecca J. Wirfs-Brock. Designing scenarios: Making
the case for a use case framework. The Smalltalk
Report, 3(3), 1993.

[28] Rebecca J. Wirfs-Brock. The art of meaningful
conversations. The Smalltalk Report, 4(5), 1994.

