
Methodologies and Practices – White Paper

Uses of Use Cases
By David M. Rubin

Revision: July 1998

Softstar Research, Inc.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 2 -

Table of Contents

TABLE OF CONTENTS ... 2

ABSTRACT... 3

WHY OO... 4

HISTORY.. 7

DEFINITION OF USE CASES... 10

USE CASE SEMANTICS.. 12

PURPOSE .. 12
CONTENTS ... 12
PLURALITY .. 13
STRUCTURE ... 13

USE CASE TEMPLATE.. 14

USE CASE DIAGRAMS.. 17

IDENTIFICATION OF USE CASES... 18

USE CASE USES.. 20

TRAINING... 20
TESTING... 21
CLASS MODELS ... 21
CLASS DISCOVERY... 21

Noun Extraction.. 22
Verb Extraction... 22
Adverb Extraction ... 22
Adjective Extraction.. 22

OID’S [OSD’S] / SEQUENCE DIAGRAMS.. 22
Primary course.. 22
Alternate course.. 23

USE CASE TOP RULES.. 24

METHODOLOGY, MY $0.02... 27

A TYPICAL PROJECT APPROACH.. 28
A TYPICAL ITERATION APPROACH... 29
A TYPICAL HIGH-LEVEL OO METHODOLOGY... 30

AUTHOR... 31

INDEX.. 32

REFERENCES.. 33

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 3 -

Abstract

Use Cases have become the starting point of many current Object Oriented (OO)
development methodologies. They generally serve as both a foundation and entry
point for the rest of the analysis and development process.

It’s been my experience while consulting with new clients that three areas of confusion
are prevalent regarding Use Cases being applied for the first time. The first area is
the structure of Use Cases themselves, including the format and a definition of what a
Use Case is. Second is the content of Use Cases; specifically the content of the
different sections that make up the Use Case. Third is the context of Use Cases. In
context I refer to how Use Cases fit within the (an) OO process or development effort.

To phrase it another way; why are we doing Use Cases, what do they look like, and
how might they be used when there completed.

During these consultations, I recommend many articles, references, and books to my
clients as they embark on their first (and beyond) OO projects. Included in these
recommendations are numerous compositions on OO methodology and process
[RUP], OO notation [UML], and OO transition management. I particularly like articles
describing real world experience and best practices from those in the industry that live
it.

This paper is an overview of some of this documentation, including some techniques
that have helped introduce teams to the OO world and the use of Use Cases.

It begins with a perspective on why OO has become so powerful and effective. Then
continues with a brief history of Use Cases adapted from an article by Edward V.
Berard of 'The Object Agency, Inc'. It continues with some ideas on Use Case
semantics, which were first introduced by Alistair Cockburn in his article ‘Structuring
Use Cases with Goals’.

Finally I try to introduce the three areas identified above, what, why, and how
regarding the Use of Use Cases.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 4 -

Why OO

While first starting out in software development, structured technologies were all the
rage. My years in the Air Force taught me the best of these, including my personal
favorite ‘TDSP’, a.k.a. ‘Top down Structured Programming’ and/or ‘Top Down
Structured Design’.

At the time, these methodologies advanced both the industry as a whole and the
software development process in general. Some of the more common methods for
achieving a ‘good design’ were:

♦ Top-down design and construction,
♦ Divide and Conquer approach’s,
♦ Limited control structures,
♦ Limited scope of data structures,
♦ Isolation of procedures, and
♦ Building around a function.

To begin to understand the differences between a structured and an object approach,
consider the way different programmers might describe a car:

Programmer Car Description

Structured
Analysis

A little gas from the fuel tank goes into the fuel line, which
feeds the gas into the engine. Then the engine converts
the fuel into energy, which causes the engine to turn a
small amount. Then the transmission attached to the
engine turns a little bit. Then the driveshaft attached to the
transmission turns a little bit. Then the differential attached
to the driveshaft turns a little bit. Then the wheels attached
to the differential turns a little bit. Then the car moves a
little bit.

These actions are repeated, over and over in a loop until
the driver turns off the ignition.

Object Oriented
A Driver presses the gas pedal, which makes the car
move. The engine stops when the driver turns off the
ignition.

A couple of interesting things are reflected above. First, structured systems were
always defined using notation and representation from the IS perspective.
Requirements of a system by their very nature were technical in definitions. Second,
the styles of the systems were reflected back to their users from this same technical
perspective. Even back then (era 1970-1980), the concept of Use Cases could have

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 5 -

Process
Decomposition

Functional
Decomposition

Requirements
Analysis

Business Process

Re-Engineering

Te
st

in
g

(C)1996 Softstar Research, Inc.
All Rights Reserved

User

Systems
Development

System
Requirements

Application

U
se

r
In

te
rf

ac
e

D
at

a
P

ro
ce

ss
in

g
(f

un
ct

io
ns

)
D

at
a

M
od

el
in

g

been applied effectively. Edward V. Berard1 points out that Use Cases aren’t
necessarily an OO discovery, they were just adopted by the OO industry because
they work.

Use Cases go to the heart of what I consider one of the fundamental problems with
developing software, that of delivering a solution to a customer (or user), that the
customer (or user) wants. In the past (as well as now), one way of looking at systems
development is by using the ‘Two Stovepipes metaphor’ to model the Software
development process. (Note: Someone once said there are only two types of
individuals in the world, those that can split and categorize everything into two, and
those that can’t).

The first stovepipe we’ll call the ‘process analysis’ and ‘business case’ column, while
the second stovepipe we’ll call the ‘delivery of systems’ column.

In the first stovepipe, we do our ‘identification of a problem’, which turns out to be the
starting point for doing the business case. From there, we move into very analytical
and ‘requirements gathering’ type activities, which aren’t necessarily the same as the
requirements gathering for developing a system. These activities include things like
process decomposition, functional decomposition, business flow diagrams, business
event diagrams, workflow swim lanes, BPR activities, etc.

As we work down this stovepipe towards the end, we come out (end up) with a good
understanding of the business itself. We also discover why there might be an

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 6 -

opportunity to develop a system. All through this first stovepipe, we constantly kept
the user involved. In fact, not only were they involved, most of the activities
accomplished here were driven by the users and the business.

Next come the second stovepipe, that of systems development. A common
technique in the past was to start at the bottom of this stovepipe and work our way to
the top. By starting at the bottom, this usually involved significant modeling from an
attribute/data perspective. Using the output of the analysis stovepipe and feeding that
into data flow diagrams, entity relation diagrams, IE modeling constructs, etc.
Eventually we identified the specific data in the system, and the relationships between
that data, which helped create our first cut-data, entity and relational models.

On top of these ‘data and entity model’ diagrams, we used other diagrams to figure
out how we were going to create, modify, move, and generally manipulate the data.
These diagrams helped describe what type of processing we need to do on that data
(also represented as data flow diagrams, entity-relations diagrams, function point
analysis, state diagrams, etc).

From there we continued to work our way up the stovepipe, until we’re finally left with
the need to throw a user interface on top of the work already done. The user interface
usually drove the processing already defined, which drove the coding already done,
which manipulated the data already defined. At the end of all this, we threw the entire
package over the wall, back to the original users.

Here’s where things really broke down (actually, they broke before this, we just didn’t
know till now). The users ultimately resisted the system. It turns out not to be very
close to what they wanted, and how they wanted it. Lot’s of finger pointing usually
occurs right about this stage. Interestingly, there are a couple of ‘immediately
identifiable problems’ that I believe contributed to the users dissatisfaction.

The first identifiable problem is the way in which the system was defined. The IS
departments inherently interprets [filters] the user requirements through their own
perceptions and experiences. These perceptions are for the most part very technical
in nature, which usually drives the development of systems from the IS perspective,
and not from the user perspective.

Second, the business is continually moving forward while the actual system is being
developed. This inevitably changes the business requirements that the system must
satisfy. If problem one is not the cause (misinterpreted requirements), then the fact
that the actual system was built to those requirements can be a problem. It’s a difficult
no-win situation.

What’s needed is a way to develop a system that constantly keeps the users involved
in the definition, while at the same time being flexible enough to accommodate
changes during the development of the actual system itself.

It is this need that has helped popularize the OO process, which I believe starts with
Use Cases and continues with an incremental/iterative development model.

In this updated ‘stovepipe’ model, the system development phase again starts with
the users, with the use of ‘Use Cases’, and continually keeps the user in the loop
throughout the entire development process.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 7 -

History

The following history is a paraphrased section of an article written by Edward V.
Berard of The Object Agency, Inc.2 Mr. Berard’s introduction is among the best
historical overview’s of Use Cases that I’ve read.

In June of 1979, the
Ada programming
language became a
reality3. The U.S.
Department of
Defense set up Ada training classes at West Point, the Naval Post Graduate School,
Georgia Institute of Technology, the National Physical Laboratory (U.K.), and the U.S.
Air Force Academy in Colorado Springs, Colorado.

At the Air Force Academy, the task of designing a weeklong Ada training course fell to
Major Dick Bolz and Captain Grady Booch. It was impressed upon Booch and Bolz
that any Ada training course must emphasize software engineering, not merely the
syntax and semantics of the language.

This point was further reinforced at an ACM symposium on Ada in late 19804. Booch
realized that it would be difficult merely to teach an Ada “syntax course” in a week’s
time. Therefore, he sought out some simple mechanism for incorporating software
engineering into the training course.

Booch found the work of Russell J. Abbott5 to be particularly appealing. (Abbott’s work
was later revised and published6.) Abbott’s approach was first to write a paragraph
describing a solution to the given problem. Once the paragraph was written, it could
then be examined and parsed into individual elements. The nouns, noun phrases,
and pronouns would suggest candidate Ada packages, and the verbs in the
paragraph would suggest candidate functions and procedures to be contained within
those Ada packages.

Booch liked Abbott’s approach, and combined it, along with influences from
Smalltalk7, object-oriented computer hardware8 9 10, rigor in the software development
process11, and a reverence for software engineering in general12, into a process he
called “object-oriented design.” The first versions of Booch’s object-oriented design
process and notations can be found in Bolz and Booch, 198113, Booch 198114,
Booch, 1982a15, and Booch, 1982b16.

These early efforts by Booch were important because of his attempt to view object-
orientation not merely in terms of a relatively informal coding practice, but rather as a
(at least partial) ‘life-cycle’ process. Object-oriented programming, ordinarily, was
viewed as similar to structured programming17, i.e., a process that focused primarily
on coding discipline. To be sure, object-oriented programming required an informal,
almost entirely intuitive, means of conceptualizing the problem, but there was little in
the way of formal guidance provided.

1979 - - - - - 1982 - - - - -1985 - - - - 1988

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 8 -

Through his descriptions of the object-oriented design process and his diagramming
techniques, Booch was striving for something that was closer in form to structured
design18 than to a largely informal coding strategy.

Booch’s 1980-
1981 concept
of object-
oriented design
involved the
beginnings of his now well known “Booch Diagrams,” and a simply defined process19,
i.e.:

1. Define the problem.
2. Develop an informal strategy for the abstract world.
3. Formalize the strategy.

a. Define the objects and their attributes.
b. Define the operations on the objects.
c. Define the interfaces.
d. Implement the operations.”

It is the second step in Booch’s process (i.e., the development of an informal strategy)
that involves what some today would call a “Use Case”. The “informal strategy,” as
Booch originally described it, was “in the form of a paragraph” describing a solution to
the defined problem.

Of course, compared with what Jacobson was to describe years later, there was little
in the way of a well-defined process for creating a set of well-defined Use Cases.

The Object-Oriented Design Handbook for Ada Software20 was one attempt to define
a systematic and repeatable process for the creation of both individual and sets of
“informal strategies.”

The purpose of the “informal strategy” was twofold:

1. The informal strategy provided a means of identifying candidate objects and
their attributes; e.g., nouns, pronouns, and noun phrases were used to
suggest candidate objects.

2. Just as importantly, the informal strategy described the interactions and
interrelationships among the objects that would effect a solution, i.e., the
informal strategy had to solve the defined problem.

In the early 1980s, there was much resistance to Booch’s object-oriented design
approach. Software practitioners — never known for their writing and documentation
skills {even to this day} — complained about the informality of the paragraph format.
Science (Computer Science) after all was very much disciplined and formal by its very
nature.

Many suggested more rigor could be accomplished with graphics (e.g., data flow
diagrams and state transition diagrams a la [Ward and Mellor, 1985]21), or formal
(mathematical) techniques like VDM22 23.

1979 - - - - - 1982 - - - - -1985 - - - - 1988 - - -

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 9 -

Booch himself, more than once, considered ways of integrating graphical techniques
into the strategy defining process, e.g., the use of data-flow diagrams24. Today, there
are increasing numbers of formal techniques for expressing object-oriented designs
(e.g., “object-oriented Z”25). However, there is also a decided shift towards relatively
simple ways of expressing object-oriented analysis and design. It is the (seeming)
informality of Use Cases, which makes them attractive to many object-oriented
technology users.

The fact that this informality also serves to bridge the systems development gap with
the users is an obvious benefit {perhaps one of the most important benefits}. Use
Cases are being incorporated several object-oriented methodologies, e.g., Fusion26,
Wisdom [IBM, 1996], Visual Modeling Technique (Walter Fang of IBM), etc. In
addition, as Use Cases become part of the UML Unified Modeling Language [Booch,
Rumbaugh, Jacobson, 1996], in a truly real sense, Booch has come full circle.

By 1986, there was already quite a few object-oriented design approaches from which
to choose. At the 1986 Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) conference27, Ivar Jacobson presented his ideas on the
design of large, real-time systems28. In this presentation, Jacobson discussed such
things as “blocks,” “services,” “objects,” “signals,” and “messages,” along with
references to a formal specification language, i.e., FDL.

It was not
until the
1987
OOPSLA
conference
29, however,
that many in the object-oriented community were introduced to both “ObjectOry” and
“Use Cases.” In his 1987 presentation30, Jacobson described ObjectOry as a
technique, and Use Cases as a tool used within that technique. The “use” in Use
Cases was clearly intended to be from the view of a “user of the system".

“The system is described in ObjectOry as a black box by describing a number of
aspects of the system. These different aspects, each corresponding to a behaviorally
related sequence are called Use Cases. “The basis of ObjectOry is that it shall be
designed for its users. We want to build the system for them. In order to safeguard
that the users really get the system they want and need, we want to structure the
system’s total behavior in
aspects, where each
aspect corresponds to what
we can call a Use Case.”

In 1996 the collaboration
between Jim Rumbaugh
and Grady Booch on what
was then the Unified
Method; transforms into the
Unified Modeling Language
(UML) and officially
includes Ivar Jacobson
'Use Cases'.

1982 - - - - -1985 - - - - 1988 - - - - 1991 - - - - 1994 - -

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 10 -

Definition of Use Cases

The classic definition of Use Cases comes from Ivar Jacobson's 'Object-Oriented
Software Engineering' (OOSE)31 which states: “A Use Case is a sequence of
transactions in a system, whose task is to yield a measurable value to
an individual actor of the system.”

To define Use Cases from a different perspective, I think back to a technique I learned
many years ago regarding the design of software systems. The technique was to
“write the users manual”, before designing the actual program. With that technique in
mind, Use Cases can be thought of as a technique for writing the users manual of a
system, before actually designing the system itself.

To further understand Use Cases, we will attempt to decompose the classical
definition defined above in a somewhat formal notation:

♦ A Use Case is “a sequence of transactions through the system, that is, an instance”
32. Using the concept of a class as the set of all items that share a collection of similar
characteristics, it is suggested that many similar courses of events be grouped into a
“use-case class.” (Note that this definition, i.e., a class is a set of instances, is not the
same definition of class that is used in a Smalltalk, C++, or Eiffel context.)

♦ An actor is “a role that someone or something in the environment can play in relation
to the business”. Alternatively, Jacobson33 defines an actor as representing
“everything that needs to exchange information with the system,” and Christerson and
Jonsson34 define actors as “everything that interacts with the system.”

An “individual actor” (sometimes referred to as a “user”) is defined to be an instance of
class actor. Further, the same person referred to as a 'user' can assume more than
one role.

♦ “Transactions in a system” implies that the system will make available to its actors a
set of capabilities that will both allow the actors to communicate with the system and
to accomplish some meaningful work (i.e., work that results in some meaningful
value).

Transactions (plural) also imply that this may be in the form of one, or more than one
step.

♦ “A measurable value” implies that the performance of the task (or transactions) has
some visible, quantifiable, and/or qualifiable impact on those things, which lie outside
of the system, and in particular, the actor who initiated the task.

♦ A transaction is defined as “an atomic set of activities that are performed either fully
or not at all. It is invoked by a stimulus from an actor to the system or by a point in time
being reached in the system. A transaction consists of actions, decisions and
transmission of stimuli to the invoking actor or to some other actor(s).

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 11 -

Another important aspect of Use Cases is that: “The set of all Use Case
descriptions specifies the complete functionality of the system.” .35 This implies
that all of the Use Cases taken together 'is' the system.

Jacobson goes on to say that, any Use Case may be augmented with (stated)
alternative courses of events. Further, any Use Case may include other Use Cases,
which implied the Use Case being defined ‘extends’ the included Use Case.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 12 -

Use Case Semantics

Use Case semantics in this reference refers to the assemblance of the Use Case
itself. On smaller projects, consistent semantics is important because of the diversity
of the Use Case audience. This diversity often leads to misinterpretation. On larger
projects, Use Case semantics becomes a necessity, especially with multiple
facilitation’s extracting multiple Use Cases.

Alistair Cockburn in his article ‘Structuring Use Cases with Goals’ identified he
encountered 18 different definitions of Use Cases. He further classified these
definitions along four dimensions; purpose, contents, plurality, and structure.
Within each dimension, he has identified the specific values the dimension could take
on. Mixing just the values of each dimension alone yields over 24 different
combinations of Use Case semantics.

I found Mr. Cockburn’s work important enough that understanding the complexities of
Use Case semantics would be difficult without it. He does not recommend any one
particular combination over another, just that the combination be identified and
articulated to the entire project team.

Purpose
The purpose dimension is divided along two vectors, stories and requirements. The
first vector ‘stories’ means that Use Cases could be structured to gather stories of how
the system will be used. I’ve found that these stories often are used (and useful) as a
precursor to a process decomposition activity (or functional decomposition activity).
The other vector of purpose is requirements. By requirements, we mean fleshing out
the details of the system being designed from the ‘actors’ perspective.

Values

♦ Stories
♦ Requirements

Contents
The contents dimension is divided among three vectors, contradicting, consistent
prose, and formal content. The contradicting dimension defines whether the Use
Case is consistent, or whether the Use Case is self-contradicting. If the Use Case is
consistent, then is it formatted in plain prose or is it structured using a formal notation.

Values

♦ Contradicting
♦ Consistent Prose
♦ Formal Content

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 13 -

Plurality
The plurality dimension addresses the multiplicity of content of the Use Case. Does
the Use Case have a one-to-one relationship with a scenario, or does a Use Case
contain more than one Use Case (or scenario).

Values

♦ One
♦ Multiple

Structure
The structure dimension addresses multiple Use Cases taken together (i.e. a
collection of Use Cases). When Use Cases are associated with other Use Cases, do
they have a formal structure, an informal structure, or do they form an unstructured
collection.

Values

♦ Unstructured
♦ Semi-formal
♦ Formal Notation

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 14 -

Use Case Template

The following is a recommendation for a starting point in defining a Use Case
template. This template follows the semantics of;

♦ Requirements,
♦ Consistent prose,
♦ Multiple, and
♦ Semi-formal.

Remember that the template only serves as a style guide to promote consistency
among multiple people and multiple Use Cases. It is in no way the all-encompassing,
all defining structure of the Use Case. Like everything else in any OO ‘life-cycle’, the
template itself is iterative in nature and will change as time goes on based on an
iterative feedback loop.

The template example below is structured into two columns. Column 1 contains the
title of the template section, column 2 contains the template section description.
Remember when describing Use Cases to always try and keep in mind the distinction
between the 'user’s' problem and context, and the systems implementation domain.

In other words, keep implementation details our of the Use Case. This doesn’t
mean ignore implementation details that are discovered while doing Use Cases, it just
mean that these details should be documented separately. I often suggest keeping
a separate ‘implementation notes’ document that has references back to a Use Case
where an implementation detail was discovered.

Title A one-sentence title of the Use Case being described, usually no more
than a few words.

Summary The summary is a brief synopsis of the Use Case, usually a shorter
version of the description described below. The summary is often
divided into three points, and can be documented as three separate
bullet items. The three points are the trigger, the action, and the result.

These points can be stated using the following template for sentence
structure.

1. This Use Case begins when …
2. This Use Case does …
3. This Use Case concludes (or ends) when …

Description A short, well-written paragraph that defines the nature of the 'Use Case'
in prose form. Sentences within the description generally contain 4 parts
and can be of the following form:

1. Time Sequence
2. Actor
3. Action

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 15 -

4. Constraint(s)

For example, "At the end of the month, the accounts receivable clerk will
mail advises to all customers whose balance is over a certain amount".
The previous sentence contains the following elements as mapped to the
list above:

1. Time Sequence: 'end of the month'
2. Actor: 'accounts receivable clerk'
3. Action: will mail advises
4. Constraint(s): ‘balance is over a certain period’.

Use Case Goal Statement of the actors business goal or objective met by this Use Case.
If the actor is an actual business user, the goal is based on his or her
own words.

A good format is, "I want to be able to… ".

In the example above, the goal might be "I want to be able to send
accounts receivable notices". Often times the ‘Use Case Goal’ is
duplicated in the part of the Use Case description, and a separate
section is not desired.

Actor(s) A list of one or more actors participating in this Use Case.

Assumptions /
constraints

A statement or statements that affect or modify the systems behavior or
operation of the Use Case.

Basic course of
action

An ordered list of the steps taken by the actor or actors that constitutes
the Use Case. This is the primary sequence of steps usually taken to
satisfy the Use Case.

Actions are generally described from the actors perspective, not the
analysts perspective. Try to avoid any details that are implicit
implementation considerations.

Each step in the basic course should be numbered, so that the steps can
be referenced easily elsewhere.

Alternate course
of actions

Any alternates set of steps that are exceptions to the basic course. The
first sequential step in an alternative course should reference back to a
step (identified by number) in the basic course.

Alternate course(s) can also reference how a basic course is reentered
after corrective action is taken, or they can end without reentering the
basic course.

Alternate courses of action can also be a mechanism to reduce the total
number of Use Cases defining a system.

Questions Any unresolved points needing clarifications that are uncovered (surface)
while writing of the Use Case.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 16 -

Business Owner Administration data. The business owner (user) who is responsible for
the Use Case.

Author Administration data. Use Case author’s name; usually the domain or
business analyst.

Last Updated Administration data. Date the Use Case was last updated and by whom.

Again, the template outlined above is not all encompassing. It is merely an example
of a template that can be used as a foundation. Depending on the system being
developed, numerous other sections that can be added.

Example may include Security, Deliverable Project Phase, Priority, Complexity, Etc.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 17 -

Use Case Diagrams

Use Case
diagrams are
used to frame
the scope of
the system that
the individual
Use Cases
describe. They
also visually
describe one or
more Use
Cases, which
with a particular
actor interacts.

Use Case
Diagrams
usually
comprise two
different levels
of information, the Top Level Use Case Diagram (or System Use Case), and the Low
Level Use Case Diagram (or Actor Use Cases diagram).

The Top-Level Use Case diagram can be thought of as a “level 0-context diagram”.
Its primary purpose is to understand the context of the entire system with regard to the
systems external interfaces.

The low-level Use Case diagram is
used to depict which Use Cases
within the system the external actors
actually interact with.

These diagrams also have value
when designing (or laying out) the
user interface of the system.
Understanding the groupings of
functionality that individual actor(s)
interact with will make for a much
more cohesive and organized system.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 18 -

Identification of Use Cases

The first rule of Use Cases, don’t do them without the users of the system. With that
said, here are some techniques I've used when trying to brainstorm (identify)
candidate Use Cases. (For further techniques, see the section of 'Top Ten Rules of
Use Cases'.)

Generally, it’s a good idea to start with the Actors. Actors are generally easily
identified by asking questions like;

• What user groups will be using the system?
• Who within those user groups will be using the system?
• Are there any existing systems today that must be considered?
• Why are we even discussing a system in the first place?

Once some of the Actors have been identified (of course using an Actor template
form), we begin to identify the Use Cases themselves. Always remember that the
initial list of Actors and Use Cases are just that, ‘the initial list’.

It may be useful to think of the entry point for a Use Case as a trigger or an event.
That is to say, something must happen to invoke the system to do something else;
that should conclude in some measurable result. Invocation of that something is
generally triggered by an actor. This actor then becomes the actor of the Use Case.

To further discuss triggers, traditional 'Process Decomposition' usually identifies three
types of triggers or events that force a process. These three triggers are Internal,
External, and Time.

♦ Internal Trigger. An internal trigger is something that happens internally
within an organization. Usually this implies things caused by employees or
internal systems. For example, an internal trigger could be a legacy
computer system requesting data from the OO system. Alternatively,
employees submitting an expense report to the accounting department.

♦ External Trigger. An external trigger is something that happens externally to
an organization. This often implies things that the internal organization has
no direct control over when it happens. For example, a customer calls a
customer service representative.

♦ Time Trigger. A time trigger is something that happens at a pre-determined
time. Usually a time trigger has some sort of regular interval for triggering.
For example, every night at 11:00 a backup process starts. On the other
hand, every other Wednesday the payroll module of the accounting system
activates to ensure payroll is met that Friday.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 19 -

Identification of these triggers (from the Process Decomposition world) can be equally
useful to formulate the beginning of Use Cases.

Other techniques to identify Use Cases can come from the legacy 'Structured
Methodology' worlds. Often I use the divide and conquer method to start identifying
pieces of functionality from my users when first documenting Use Cases.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 20 -

Use Case Uses

The third area of confusion I’ve often run into is not knowing how Use Cases will [and
can] be used throughout the development ‘life-cycle’. While there are many more
numerous places and examples, I’ve tried to outline some of the more common that I
see time and time again on multiple projects.

By having an understanding of how something will be used, it inherently leads to the
better creation of such a thing [this is the whole point of Use Cases them selves in
system development].

Think of this next section as a kind of ‘Use Case for Use Cases’.

Training
By combining the Use Cases defined for a system with the user interface(s) [defined]
for the system (or user interface prototype), the initial user training documentation can
begin.

Common sense says that if we know the following:

1. How the actors [users] want to interact with the system (primary course, alternate
course), and

2. What results they [actors] get from the system [Use Case goal], and
3. How the system actually looks [user-interface],

Then we ought to be able to start the training live-cycle.

Use Case Model

Use Case

Actor

Use Case

Actor

Use Case

Testing ModelObject Model (Domain) Analysis Model Implimentation ModelDesign Model

Expressed in terms of
Tested in

Implimented by
Realized by

Structured by

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 21 -

Testing
Combining the Use Cases with implementation details and architecture strategy is
often the first step in planning the testing life cycle. High-level test scenarios are often
directly derived from the Use Case itself [primary course through the Use Case].

Decomposing these test scenarios into individual test scripts is often done by looking
for exception processing conditions [alternate course(s) through the Use Case]. At a
minimum, the Use Cases can directly drive the high level-testing plan.

Another way to describe test cases (since we’re talking about OO here) is that a
scenario is simply the instantiation of a Use Case. And a testing script is the
instantiation of a scenario. This gives us a one-to-many relationship between Use
Case and scenarios, and a one-to-many relationship between scenarios and test
cases.

Class Models
Use Case’s can be used as the starting
point for CRC sessions, which in-turn
drives the class models and further
class discovery. Even without using
techniques such as CRC sessions, the
descriptions in the Use Cases
themselves can be a good starting point
for identifying class relationships.

These relationships are often the first-
cut class models. Combining these
first-cut class models with a list of
discovered class (next section); the
beginnings of inheritance diagrams can
be formed. It is often the case that
starting to create class diagrams is more difficult that continuing or expanding class
diagrams.

Use Cases can give modelers and designers the tools to create the initial class
diagrams.

Class Discovery
Class discovery is the starting point of all class and object diagrams. While there are
many techniques for doing class discovery, using the descriptions in Use Cases is
often one of the easiest.

Classes are generally composed of attributes and methods, and Use Cases can
directly be decomposed to aid in this discovery. Some of the more common
techniques for doing this are listed below.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 22 -

Noun Extraction

Noun extraction is one of the easiest techniques for class discovery. At is simplest
form, it becomes a matter of decomposing the Use Case description and identifying
the actual nouns. These nouns then directly become Candidate Classes'

Verb Extraction

Verb extraction is a common technique for exploring candidate methods on classes.
By simply searching through the textual description of a Use Case for verbs, one can
easily identify candidate methods. The methods discovered are generally considered
part of the class that identified by the noun the verb is referencing in the description.

Adverb Extraction

Adverb extraction, like noun and verb extraction, is used to identify candidate
attributes within a Use Case description. Adverb's are usually words that indicate a
particular quality of a noun, thereby translating into a candidate attribute for the class.

Adjective Extraction

Adjective extraction is a special case of adverb extraction. These words generally
identify the particular state of a noun, thereby translating into candidate attributes.
Depending on the complexity of the adjective, they can also identify candidate class
that may require associated state diagrams.

OID’s [OSD’s] / Sequence Diagrams

Primary course

The primary course through a Use
Case can usually be translated
into one or more OID's (Object
Interaction Diagrams) or sequence
diagrams (OSD’s).

The steps in the primary course
usually indicate sequential acts
that must be performed to satisfy
the Use Case, thereby translating
into interaction between different
object to facilitate the course itself.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 23 -

Alternate course

Alternate courses, like primary courses, generally
identify exception steps that must be performed
outside of the primary course to satisfy the Use
Case.

Generally, these are also translated into interactions
between objects, that are documented as OID's
and/or sequence diagrams (OSD’s).

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 24 -

Use Case Top Rules

The Use Case rules presented here are an expansion of an article by Ari Jaaksi of
Nokia Telecommunications36. They help document real-world experiences and 'best-
practices' from multiple OO projects.

These rules can be used as guiding principals on projects that incorporate Use
Cases.

1. The most important requirements must be specified in Use Cases. In the first
phases of a system development project, functional and other requirements for the
system are collected. Use Cases are generally thought of as a tool used to analyze
and document these requirements.

Thus, if we have a requirement for a system being developed, that requirement
should be defined and documented in one or more Use Cases.

It should be noted that the requirements being described here are 'functional
requirements', and not necessarily 'technology requirements'. These types of
requirements are generally defined in the context of architecture. If during the
discovery of functional requirements, technical requirements are identified, they
should be captured in a related document.

2. A Use Case describes something the designer can be proud of, and the
customer is willing to pay for. I'm especially fond of this rule. It helps define the
proper scope and detail of a Use Case, thereby providing consistency among multiple
Use Cases.

Use Cases that are too broad in their definition are generally to complex to
understand, or too vague to be useful. While Use Cases that are too narrow in their
definition are generally too detailed. This rule helps provide a balance.

Therefore, an entity that a customer is willing to pay for while at the same time the
designer is proud of, is a good candidate for a Use Case. This rule helps further
promote the idea that a Use Case must describe something that is beneficial to the
end user.

3. A Use Case depicts a typical way of using a system, but nothing more. One
single Use Case should depict just one possible way of using the system. A Use
Case should not try to cover issues outside of its area, and should not try to define all
the possible way of performing a task. Instead, each Use Case should define the
recommended way of performing a task that the customer (i.e. actor) needs to carry
out.

Other ways of using the system should be described in other Use Cases. Exceptions
to the Use Case being defined should be described in the 'Alternative Courses'
section of the Use Case. However, only where the alternate coarse adds value from
the customers perspective. If the alternative coarse describes system exceptions

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 25 -

and/or error handling, it belongs in the architecture documentation and not the Use
Case.

4. A Use Case is a play. One Use Case is like a classical play. Anybody who wants to
take the role of the Actor must be capable of performing as intended in the play, just
by reading the manuscript (in this case, the Use Case).

The system in this 'play' plays the role of another Actor. The Use Case should not
provide the Actors with too much freedom, thereby allowing the play to end up in
chaos. At the same time, the play should conclude in the same way each time the
manuscript is executed.

5. A Use Case has a beginning, a main body, and an ending. Each Use Case
should be a complete story, with a beginning, a main body, and an ending (see the
Summary section of the Use Case Template, Page 14).

Each Use Case clearly defines where it starts (event or trigger) by explicitly defining
the preconditions required. It then continues with the main body of the Use Case.
The main body is the 'actual' thing the Use Case does; i.e. the functionality that
describes how the actor interacts with the system.

Finally, a good Use Case has some kind of ending that closes the Use Case. The
ending usually defines the tangible results that the Use Case has produced. The
ending is generally the result that the customer is willing to pay for, and the reason for
having the Use Case in the first place.

6. A Use Case is like an essay written by an elementary school pupil.
Keep it simple. Enough said!

7. A Use Case fits on two pages. The entire text of the Use Case should fit on no
more than two pages. Longer Use Cases are hard to understand and are generally
contain much too much detail.

Either that or they contain multiple areas of functionality, and should be broken into
multiple Use Cases.

8. A Use Case is load and clear. Each Use Case must make clear statements. The
content should be so clear and explicit that the people who read them, such as
customers and software designers, can form strong opinions.

A good Use Case describes the usage of the future system so precisely that they can
only get better by stimulating conversation between customers and designers.

If nobody disagrees with the first version of the Use Cases, then there probably
wrong.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 26 -

9. Customers, Users, and Software Designers can all sign the Use Case.

10. A Use Case is used as the foundation of system testing. A Use Case forms the
foundation of many things. One of the most important in the later stages of system
development is that of system testing.

Referring to Ivar Jocobson's premise of ‘The set of all Use Case descriptions
specifies the complete functionality of the system.37’, one can also conclude that
if all of the Use Cases work, then the system is complete (and hopefully accepted).

The way to ensure if all of the Use Cases work is through a comprehensive test plan
that includes detailed test scenarios. This test scenarios can (and should be) directly
derived from the Use Cases.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 27 -

Methodology, my $0.02

Methodology means many things within the OO world, depending on the particular
context the word is being used in at the time. First and foremost, it’s important to
understand the difference between a methodology and a notation. Too often, I
encounter the student of OO that has just completed a class in the UML (Unified
Modeling Language, language being ‘Notation’) and is ready to start coding.

At a high-level, a methodology is a process. It's a way of doing something. A notation
is a language. It's a way of documenting something. The two often work hand in
hand, but it's important to understand the differences.

With that said, one of the first things that I tell every client and every student is the
following:

Select any methodology. It can be OO, Structured, a combination of the
two, or any other type of systems development methodology. The
author can be any person, organization, and/or institution. Then follow
that methodology exactly, and there’s one thing I can surely guarantee:
You will fail!

Systems development is still partly a science of trial and error. I have yet to see the
all-encompassing cookbook of software development, and yet many organizations
embark on the OO path as if it’s some kind of 'silver bullet'.

Methodologies should be used as the baseline roadmap. A starting point defining
proven best practices if you will. The methodology itself should also allow for the
customization of itself, based on the current system, project, organization, and/or
resources that are being applied.

Use Cases provide an entry point into many typical OO methodologies used for
systems development. While I've been successful employing Use Cases on a diverse
variety of projects, they are not an OO Silver Bullet by any means. There's still a lot to
be said for many of the 'legacy' structured methodologies.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 28 -

A Typical Project Approach

Ops.

Business Case

Analysis RolloutTestingDevelopmentRequirements Design

Business

Business Case

Analysis RolloutTestingDevelopmentRequirements Design

Project Management

Architecture

Ø Process
Ø Problem
Ø Opportunity
Ø Etc.

(C)1996-1998 Softstar Research, Inc. All Rights Reserved

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 29 -

A Typical Iteration Approach

Analysis RolloutTestingDevelopmentRequirements Design

Deliverables

(C)1996-1998 Softstar Research, Inc. All Rights Reserved

Ite
ra

tio
ns

1

2

3

N

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 30 -

A Typical High-Level OO Methodology

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 31 -

Author

David Rubin is a Founder, Chief Technical
Architect, and OO Methodologist at Softstar
Research, Inc. He has been in the computer
industry for over 20 years, starting his career with
the United States Air Force in the 1970's, while at
the same time teaching Computer Science
courses at Oklahoma City College.

Throughout the 1980's and 1990's he furthered
his career and education by holding numerous
positions including Systems Engineer for
Electronic Data Systems, Manager of Branch
Automation for Total Travel Management,
Associate Director for Cambridge Technology
Partners, and Director for Claremont Technology
Group.

He currently resides in the Midwest and travels the country (sometimes the world)
consulting the merits of OO methodology and systems development.

He can be reached at drubin@softstar-inc.com.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 32 -

Index

A

Abbott...8
actor..11, 16
Actor...15, 16
Adjective ..23
Adverb..23
Alternate course..16, 24

B

Booch...8, 9, 10

C

Class...22
CRC Cards ...1

D

design... 4, 8, 9, 10

E

event diagrams..5

G

Goal..16

J

Jacobson... 9, 10, 11, 12

M

Methodologies..1, 28
Methodology ..28

N

Noun...23

O

object-oriented ..4, 8, 9, 10
objects...9, 10, 24
OID’s ... 23
OO 3, 4, 5, 7, 15, 28, 31, 32
OOPSLA.. 10

R

requirements ...5, 6, 13
Rumbaugh ... 10

S

Science... 9
Sequence Diagrams.. 23
Structured... 4, 28

T

Template.. 15
Testing... 22
Top-down... 4
Training ... 21

U

UML.. 10
Use Case3, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21,

22, 23, 24, 26, 27

V

Values.. 13, 14
Verb... 23

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 33 -

References

1 Be Careful With “Use Cases” By Edward V. Berard The Object Agency, Inc.

2 Be Careful With “Use Cases” By Edward V. Berard The Object Agency, Inc.

3 [SIGPLAN, 1979a]. Anonymous, “Preliminary Ada Reference Manual,”

4 Association for Computing Machinery, Proceedings of the ACM SIGPLAN Symposium
on the Ada Programming Language, Boston, Massachusetts, December 9-11, 1980,
Association for Computing Machinery, New York, New York, ISBN 0-89791-030-3, 242
pages, 1980.

5 R.J. Abbott, “Report on Teaching Ada,” Technical Report SAI-81-313-WA, Revised
December 1980, Research Report for DARPA Order No. 3456, Contract No. MDA
903-80-C-0188, Science Applications, Inc. McClean, Virginia, 1980.

6 R. J. Abbott, “Program Design by Informal English Descriptions,” Communications of the
ACM, Vol. 26, No. 11, November 1983, pp. 882 - 894.

7 A.C. Kay, “The Early History of Smalltalk,” SIGPLAN Notices, Vol. 28, No. 3, March
1993, pp. 69 - 95.

8 Intel Corporation, iAPX 432 Object Primer, Manual 171858-001, Revision B, Intel
Corporation, Aloha, Oregon, 1980.

9 Intel Corporation, Engineering Specifications of the iAPX Extensions to Ada, Manual
171871-001, Intel Corporation, Aloha, Oregon, January 1981.

10 E. Organick, A Programmer’s View of the Intel 432 System, McGraw-Hill, New York,
New York, 1983.

11 L. Robinson and K. Leavitt, “Proof Techniques for Hierarchically Structured Programs,”
in Current Trends in Programming Methodologies, Volume 2, Raymond T. Yeh, Editor,
Prentice Hall, Englewood Cliffs, New Jersey, 1977.

12 D.T. Ross, J.B. Goodenough, C.A. Irvine, “Software Engineering: Process, Principles,
and Goals,” IEEE Computer, Vol. 8, No. 5, May 1975, pp. 17 - 27.

13 D. Bolz and G. Booch, Software Engineering With Ada, Department of Astronautics and
Computer Science, United States Air Force Academy, Colorado Springs, Colorado,
1981.

14 G. Booch, “Describing Software Design in Ada,” SIGPLAN Notices, Vol. 16, No. 9,
September 1981, pp. 42 - 47.

15 G. Booch, “Object Oriented Design,” Ada Letters, Vol. I, No. 3, March-April 1982, pp. 64
- 76.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 34 -

16 G. Booch, “Solve Process-Control Problems With Ada’s Special Capabilities,” EDN,

June 23, 1982, pp. 143 - 152.

17 E. Dijkstra, “Programming Considered as a Human Activity,” Proceedings of the 1965
IFIP Congress, Amsterdam, The Netherlands, North Holland Publishing Company,
1965, pp. 213 - 217, Reprinted in Classics in Software Engineering, E.N. Yourdon,
Editor, Yourdon Press, New York, New York, 1979, pp. 3 - 9.

18 E. Yourdon and L.L. Constantine, Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design, Prentice Hall, Englewood Cliffs, New Jersey,
1979.

19 G. Booch, “Describing Software Design in Ada,” SIGPLAN Notices, Vol. 16, No. 9,
September 1981, pp. 42 - 47.

20 E.V. Berard, An Object-Oriented Design Handbook for Ada Software, EVB Software
Engineering, Inc., Frederick, Maryland, 1985.

21 P.T. Ward and S.J. Mellor, Structured Development for Real-Time Systems, Volumes 1-
3, Yourdon Press, New York, New York, 1985.

22 C.B. Jones, Software Development: A Rigorous Approach, Prentice Hall, Englewood
Cliffs, New Jersey, 1980.

23 C.B. Jones, Systematic Software Development Using VDM, Prentice Hall, Englewood
Cliffs, New Jersey, 1986.

24 G. Booch, “Object Oriented Development,” IEEE Transactions on Software
Engineering, Vol. SE-12, No. 2, February 1986, pp. 211 - 221.

25 S. Stepney, R. Barden, and D. Cooper, Editors, Object-Orientation in Z, Springer-
Verlag, London, United Kingdom, 1992.

26 D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes,
Object-Oriented Development: The Fusion Method, Prentice Hall, Englewood Cliffs,
New Jersey, 1994.

27 Association for Computing Machinery, OOPSLA ’86 Conference Proceedings, special
issue of SIGPLAN Notices, Vol. 21, No. 11, November 1986.

28 I. Jacobson, “Language Support for Changeable Large Real Time Systems,” OOPSLA
’86 Conference Proceedings, special issue of SIGPLAN Notices, Vol. 21, No. 11,
November 1986, pp. 377 - 384.

29 Association for Computing Machinery, OOPSLA ’87 Conference Proceedings, special
issue of SIGPLAN Notices, Vol. 22, No. 12, December 1987.

30 I. Jacobson, “Object-Oriented Development In an Industrial Environment,” OOPSLA ’87
Conference Proceedings, special issue of SIGPLAN Notices, Vol. 22, No. 12,
December 1987, pp. 183 - 191.

.........

.........

.........

©1996-1998 SOFTSTAR RESEARCH, INC. AND DAVID M. RUBIN. ALL RIGHTS RESERVED
WEB: WWW.SOFTSTAR-INC.COM E-MAIL: INFO@SOFTSTAR-INC.COM

- 35 -

31 I. Jacobson, M. Ericsson, and A. Jacobson, The Object Advantage: Business Process

Reengineering With Object Technology, Addison-Wesley, Reading, Massachusetts,
1995.

32 I. Jacobson, M. Ericsson, and A. Jacobson, The Object Advantage: Business Process
Reengineering With Object Technology, Addison-Wesley, Reading, Massachusetts,
1995.

33 I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, Reading,
Massachusetts, 1992.

34 M. Christerson and P. Jonsson, Tutorial 1: Object-Oriented Software Engineering,
Tutorial Notes, Presented at OOPSLA ’95, October 15-19, 1995, Austin, Texas,
Association for Computing Machinery, New York, New York, 1995.

35 I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, Reading,
Massachusetts, 1992.

36 Ari Jaaksi. Our Cases with Use Cases. JOOP Journal of Object Oriented
Programming, February 1998,

37 I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, Reading,
Massachusetts, 1992.

