
Lecture Notes in Computer Science 1

The Role of “Roles” in Use Case Diagrams

Alain Wegmann1, Guy Genilloud1

1 Institute for computer Communication and Application (ICA)
Swiss Federal Institute of Technology (EPFL)

CH-1015 Lausanne, Switzerland
icawww.epfl.ch

{alain.wegmann, guy.genilloud}@epfl.ch

Abstract: Use cases are the modeling technique of UML for formalizing the
functional requirements placed on systems. This technique has limitations in
modeling the context of a system, in relating systems involved in a same busi-
ness process, in reusing use cases, and in specifying various constraints such as
execution constraints between use case occurrences. These limitations can be
overcome to some extent by the realization of multiple diagrams of various
types, but with unclear relationships between them. Thus, the specification ac-
tivity becomes complex and error prone. In this paper, we show how to over-
come the limitations of use cases by making the roles of actors explicit. Interest-
ingly, our contributions not only make UML a more expressive specification
language, they also make it simpler to use and more consistent.

1 Introduction

The Unified Modeling Language (UML), standardized by the Object Management
Group (OMG) in 1996, aims at integrating the concepts and notations used in the most
important software engineering methods. UML is today widely used by the software
development community at large. While the bulk of the integration of the concepts is
completed, there are still improvements to be made in their consistency. Such im-
provements could increase the expressive power of UML while reducing its complex-
ity.

System design frequently starts with business modeling, i.e. modeling the context
of the system to be developed. The aim is to understand the processes in which the
system participates and the system’s functionality. UML proposes the use case model
to describe the system’s functionality.

Ivar Jacobson initially defined use case models in [p. 127, 7]: “The use case model
uses actors and use cases. These concepts are simply an aid to defining what exists
outside the system (actors) and what should be performed by the system (use cases)”.
According to this description, a use case represents a part of the system’s functional-
ity. UML defines use cases in a similar manner in [p. B-19, 12]: “the specification of a

Lecture Notes in Computer Science 2

sequence of actions, including variants, that a system (or other entity) can perform,
interacting with actors of the system...”

Use case models are similar to role models because their intent is to capture the
roles of each participant in an action. Role models are defined by Trygve Reenskaug in
the OOram method [14]. The method aims at achieving a design by an understanding
of how roles collaborate to achieve a goal (i.e. defining a “role model”). Roles are then
implemented by programming language objects. For our discussion, the OOram impor-
tant elements are: (1) roles help with the separation of concerns; even if an object can
fulfill more than one role, the designer can still analyze each role individually; (2) roles
focus on the notion of responsibilities (i.e. messages accepted and those sent by a
role), as opposed to classes that focus on capabilities (i.e. putting more emphasis on
the message accepted as opposed to those sent by a class). This method influenced
significantly UML and, in particular, the interaction diagrams (i.e. collaboration and
sequence diagrams). A good overview of the importance of role models can be found
in [11].

Use case models can be used to model functionality of entities at different levels of
abstraction: for example business entities (e.g. companies) [8], sub-systems (e.g. exis t-
ing IT systems to be integrated), components or even programming language classes.
In this paper we are particularly concerned with the refinement from business models
to system specification models. In the business model, the system of interest is the
enterprise and the actors are the people, companies or IT systems interacting with the
enterprise. In the system specification model, the system of interest is usually an IT
system, which needs either to be developed or modified and the actors are the entities
in direct contact with the system of interest. From our experience in consulting, we
raised several modeling questions about the utilization of use case diagrams that
document system specification models.

The modeling questions we identified are related to the representation of the sys-
tems in UML diagrams, to the impossibility of specifying some important requirements
of use cases, and to the reuse of use cases. Ian Graham mentions already some of
these problems in [4].

Desmond D’Souza and Allan Wills provide a partial answer with their Catalysis
method [1]. In their method, they first analyze the role of an IT application in its busi-
ness environment, and define the system specification independently from the imple-
mentation details. They then implement the system by defining a collaboration of
“pluggable-parts” such as programming language classes or components. They define
collaboration as a "set of related actions between typed objects playing defined roles
in collaboration" [p. 716, 1]. In Catalysis, the use case is a means to specify a collec-
tive behavior of entities without specifying the individual behavior of each entity. This
idea came originally from DisCo [9].

Our paper proposes to extend the Catalysis definition of use cases by leveraging on
the concept of role. Our propositions allow for the improvement of the use case ex-
pressiveness and should lead to a simplification of UML.

Lecture Notes in Computer Science 3

The plan of this paper is: Section 2: identification of modeling questions related to
use cases, Section 3: discussions of the questions and proposition of extensions to
the use case modeling technique, Section 4: propositions of modifications to UML,
Section 5: case study revisited using the extended use case modeling technique, Sec-
tion 6: future work.

2 Modeling Questions

In this section, we present five modeling issues related to use cases. We illustrate
these issues with an example of Company, a chain store. The Company has one Corpo-
rate HQ (headquarter) and several Stores (see Fig. 1).

Company

Corporate HQ Store
<<actor>>

Corporate HQ
Backoffice

<<actor>>
Store

Backoffice

Employee

<<actor>>
Cash Register

*

1

*

*

1

1

manages *1

Fig. 1: Class diagram describing Company structure

The Company began an IT project to automate the Cash Registers of its Stores. The
functionality to be provided is (see Fig. 2): “sell Goods” (i.e. the Cashier computes
price to be paid by the Customer and then proceed with the payment), “till Balance”
(i.e. the Cashier and the Manager check the content of the cash drawer) and “transfer
Price” (i.e. new price lists are transferred from the Corporate HQ to all Cash Registers
with the collaboration of the Store Backoffice).

Corporate HQ
Backoffice

transfer
Price

Store
Backoffice

Store Backoffice

Corporate HQ
Backoffice

transfer
Price

transfer
Price Bis

Cash
Register

(a)

(b)

(c)

Cash Register

Store
Backoffice

transfer
Price Bis

sell
Goods

Customer

Cashier

till
Balance

Manager

Fig. 2: (a) Corporate HQ Backoffice use case diagram, (b) Store Backoffice use case diagram,
(c) Cash Register use case diagram

Lecture Notes in Computer Science 4

This example raises the following points:
1. As the “transfer Price” business process specification involves three types of IT

systems (Corporate HQ, Store Backoffice and Cash Register), we must have three
separate use case diagrams (one per system type). We would much rather have
one diagram representing all system types to better understand the role of each
system type relative to the other system types. We could use an interaction dia-
gram. We would not necessarily reject this solution if in UML, as in Catalysis, in-
teraction diagrams could represent use case occurrences (in a similar manner as
stimuli are represented). Without the ability to represent use case occurrences, we
would have to refine the interactions between the systems down to the level of
stimuli exchanges. That is, we would be forced to provide too many details for
what is needed. This raises Question 1: “How can we model, in one use case dia-
gram, a business process specification between multiple system types and actor
types?”

2. As represented in Fig. 2b, the Store Backoffice system will perform occurrences of
two use cases: “transfer Price” and “transfer Price bis”. These two use case speci-
fications are identical, except for, in each occurrence, the actors are different and
the system plays a different role (sender in one case and receiver in the other
case). This forces the designer to have two independent use case specifications
(“transfer Price” and “transfer Price bis”). Of course, we want to have just one use
case specification “transfer Price”. This raises Question 2: “How can a system
play different roles in different occurrences of a same use case specification?”

3. Traditionally use case diagrams do not express multiplicities. In our example, this
prevents the modeler from specifying if the “transfer Price“ use case involves
only one recipient (unicast) or many (multicast). This raises Question 3: “How can
we capture constraints on the number of actor instances in a use case occur-
rence?”

4. When the prices are transferred, “transfer Price” should occur first, followed by
“transfer Price bis”. UML use case diagrams alone do not provide a way to spec-
ify such relationships between use cases. As a result the semantics of use case
diagrams are often unclear. This raises Question 4: “How could we represent
constraints on when use cases may occur?”

5. The concept Store Backoffice is shown as an actor (Fig. 2c) or as a system (Fig.
2b) in the use case diagrams and as a class, possibly stereotyped with <<actor>>,
in the class diagram (Fig. 1). The same concept is shown with a different diagram
element, so what is specific to actors? This raises Question 5: “ What is an ac-
tor?”

Lecture Notes in Computer Science 5

3 Extension to Use Case Modeling Technique

In this section, we will analyze the questions of Section 2 and propose possible solu-
tions.

To be precise, this paper will use the RM-ODP definition [Section 9, 6] of the terms
type, class, specification1, instance (used for concepts such as objects, comp onents,
etc.) or occurrence (used for concepts such as messages, actions, etc). The use of
these terms is illustrated in the following example: an actor specification defines the
features of an actor, an actor instance defines an actual actor entity, an actor class
defines a set of actors that share common characteristics, and an actor type defines
the common characteristics of the actors belonging to the class.

3.1 Representation of the System

In this section, we answer Question 1: “How can we model, in one use case diagram, a
business process specification between multiple system types and actor types?”

To model a business process that involves multiple system types and actor types,
we need to be able (1) to indicate which system type realizes which use case, and (2) to
model the use cases that do not directly involve systems (i.e. those use cases that are
only between actors). Currently UML use case diagrams force the designer to have
only one system of interest in a use case diagram by either representing only one
system (drawn as a box around the use cases) or none at all. This excludes from the
diagram, the use cases not involving directly the system of interest.

A possible answer can be found in Catalysis [1], a method that defines use cases as
not system-centric. Their definition of use case is “a joint action with multiple par-
ticipant objects that represent a meaningful business task, usually written in a struc-
tured narrative style. Like any joint action, a use case can be refined into a finer-
grained sequence of actions” [p. 722, 1]. A joint action is defined as: “a change in the
state of some number of participant objects without stating how it happens and
without yet attributing the responsibility for any of it to any one of the participants”
[p. 158, 1]. A use case may be described on two levels. First level is a declarative de-
scription, defined as the change of state of all use case participants resulting from its
execution. The declarative description is composed of pre- and post-conditions. It
puts an emphasis on the collective behavior of all participants. Second level is an
operational description defined as a refinement of the declarative description in which
the joint action is decomposed into smaller grain actions. These actions are either joint
actions or localized actions. A localized action is defined as “a one-sided specification
of an action focused entirely on a single object and how it responds to a request,

1 To have a terminology closer to UML, we define specification as a synonym for the RM-ODP

term template. We also consider occurrence as a synonym for the RM-ODP term instance.

Lecture Notes in Computer Science 6

without regard to the initiator of that request” [p. 715, 1]. The operational description
puts an emphasis on the individual behavior of each participant.

Corporate HQ
Backoffice

transfer
Price

Store
Backoffice

transfer
Price Bis

*

Cash Register

Fig. 3: Use case diagram representing systems with actors (UML requires that actors are used
as participants to use cases)

The Catalysis definition of the use case does not make any reference to “the sys-
tem”. Use cases are therefore no longer system centric2. The implication is that three
use case diagrams shown in Fig. 2 may now be represented in one diagram, as shown
in Fig. 3.

 3.2 Reuse of Use Case Specifications

We answer Question 2: “How can a system play different roles in different occur-
rences of a same use case specification?”

The Catalysis use case definition does not answer this question. Catalysis, as well
as UML, forces the designer to have one use case specification for each group of
actors involved (see “transfer Price bis” use case in Fig. 3). A possible answer with
Catalysis is to use a collaboration framework [p. 346, 1] to show that two use cases
with different names are of the same type. However this does not solve the problem, as
a same use case specification cannot be used by two different groups of actors.

Use case specifications explicitly refer to actors and this is the source of the reuse
problem. Introducing roles instead of actors solves it. This is consistent with the
UML definition of actors as a set of roles.

UML defines role as: “the named specific behavior of an entity participating in a
particular context. A role may be static (e.g., an association end) or dynamic (e.g., a
collaboration role).” We focus on the first part of the definition, the second part is
not important for the present discussion. By using this definition and replacing entity
by actor and context by use case we can show that an actor may be identified by its
role in the use case context (rather than by its name). Thus, roles provide the mecha-
nism needed for making use case specifications independent of actors. Use case speci-
fications may then be reused between different groups of actors and can also refer to a
same actor instance playing different roles in different occurrences. Of course, we
must have a mechanism to bind roles to actors. This can be done in use case diagrams
by writing the role as the associationEndRole on the association between the use case
and the actor (see Fig. 4).

2 We will propose a use case definition for UML in Section 4.0

Lecture Notes in Computer Science 7

Corporate HQ
Backoffice

transfer
Price

Store
Backoffice

transfer
Price

*

Cash Register

sender receiver receiversender

Fig. 4: Example of use case specification reuse in one use case diagram

Some readers may be puzzled to see two use cases with the same name involving
two different groups of actors. This is not uncommon as it is analogous to having two
associations with the same name but between different classes in a class diagram. We
still need to understand what is meant by two “transfer Price” use cases in a same
diagram. For example, in Fig. 4, the use case on the left corresponds to the class of use
cases that are instantiations of the “transfer Price” use case specification with its role
sender referring to Corporate HQ Backoffice and the role receiver referring to the Store
Backoffice.

Our approach to explicitly represent roles enables reusing a same use case specifi-
cation between different groups of actors in a same use case diagram or in different
diagrams. In addition, it is consistent with UML and in particular with: (1) the defini-
tion of role, (2) the meta-model (use cases and actors are classifiers with an association
between them), (3) the notation of roles in class diagrams (in which the roles are repre-
sented at the association end).

3.3 Constraints about Number of Instances Participating in a Use Case

We address Question 3: “How can we capture issues related to number of actor in-
stances in a use case occurrence?”.

It is not clear whether the use case modeling technique has provis ions for repre-
senting the number of actor instances (of the same actor type) participating in a use
case occurrence. The UML notation guide shows a few examples of multiplicities [p. 3-
93, 12]. However, the meta-model does not acknowledge the existence of an actor in-
stance and it is not clear if role is a type or an instance.

The difference between type and instance is often unclear as illustrated in the fol-
lowing two examples “roles (in collaborations) are somewhat between types and
instances” [p. 3-15, 12] and “if there can be more than one instance corresponding to
a given ClassifierRole, one of these instances is selected to represent them all” [13].
We believe that the difficulty in deciding if something is a type or an instance is based
on the fact that people tend to think in terms of prototypes (i.e. an instance of a type).
This is thoroughly discussed by George Lakeoff in [10]. The prototype defines a type
by using a specific instance especially representative of the type. But, at the same
time, the prototype denotes one or more actual instances. For example an instance of a
policeman in uniform is considered as defining a type (i.e. the predicate that allows to
decide whether a man is a policeman) but is an instance at the same time (i.e. the man
currently in the middle of the crossing). This mechanism of prototype explains why,

Lecture Notes in Computer Science 8

sometimes, concepts are difficult to categorize as type or instance. Unfortunately, the
prototype mechanism is not applicable in UML. Types have to be defined explicitly.
For this reason, type models (e.g. class diagrams) and instance models (e.g. object
diagrams) have to be developed. Based on this, we state:
1. All concepts exist as instances (at a specific location in time and space).
2. All concepts may be categorized into classes by means of types (i.e. predicates).
3. Instances are useful for considering interactions between concepts
4. Classes are useful for working with instances in the sense that we do not need to

look at each instance separately.

We propose that UML defines all concepts as both a concept type and a concept
instance. For most concepts, this duality type / instance already exists. The terms
chosen to denote the types and the instances are usually quite different from each
other, for example: message and stimulus, object and class, use case [class] and use
case [instance]…. Our proposition is to add definitions for actor [instance] and role
[instance] to the UML meta-model. Acknowledging the existence of actor instances in
UML is consistent with the possibility to express multiplicities in use case diagrams
(as multiplicities express constraints on the number of instances). This is illustrated in
Fig. 5.

Corporate HQ
Backoffice

transfer
Price

Store
Backoffice

transfer
Price

1 * 1

Cash Register

1

sender receiver receiversender

1

Fig. 5: Example of multiplicity in use case diagram

Fig. 5 illustrates the use of multiplicities in use case diagrams. Considering the
“transfer Price” use case, writing a multiplicity of 1 on the receiver role indicates that a
use case corresponds to a unicast. On the other hand, writing a multiplicity of 1..*
would indicate a multicast of price information.

The multiplicity notation is analog to the one used in class diagrams. The multiplic-
ity is on the actor side of the association and expresses constraints on the number of
instances involved in one use case occurrence. We purposely omit multiplicity on the
use case’s side of the association, as an actor may almost always participate in an
unlimited number of occurrences of use case.

Our approach is to systematically define all concepts as types and instances. This
allows multiplicities to be represented in type models (e.g. class diagram or use case
diagram) as multiplicities represent constraints on the number of instances.

3.4 Constraints on Use Case Occurrences

We analyze Question 4: “How could we represent constraints on when use cases may
occur?”

Lecture Notes in Computer Science 9

Actor instance and use case occurrence concepts enables the drawing of use case
instance diagrams as shown in Fig. 6. By numbering the occurrences of use cases, it is
then possible to illustrate the sequence in which use cases will be executed. The se-
quence-numbering notation is the same as the one defined in collaboration diagrams.
Its limitations are also the same. Further work needs to be done on specifying execu-
tion constraints beyond what is already defined in interaction diagrams (e.g. “con-
straints may include for example sequentiality, non-determinism, concurrency or
real-time constraints” [Section 8, 6]).

:Corporate HQ
Backoffice

1
*[for all receiver]:

transfer Price

:Store
Backoffice

*

:Cash Register

1.1
*[for all receiver]:

transfer Price

Fig. 6: Example of use case instance diagram

Note that Pavel Hruby proposes to use state diagrams to specify execution con-
straint between use cases [5]. His approach is complementary to our proposal.

3.5 The Role of Actors

Question 5: “What is an actor?” is now addressed.
UML defines actors as “a coherent set of roles that users of use cases play when

interacting with these use cases. An actor has one role for each use case with which
it communicates”. As all entities realize a set of roles, it is not clear what is so unique
about actors?

Catalysis defines actors as “external roles participating in an action” [p. 592, 1].
In general, they represent the use case participants with diagram elements correspond-
ing to the actual entity (e.g. actor, system, component, programming language class,
etc.). Unfortunately UML specifies that participants in use cases are actors (and not
any other possible entities such as sub-system, components, programming language
classes). Should this restriction be lifted?

To understand the specificity of actors and whether entities other than actors can

be represented in use case diagrams, we need to consider how actors are used:
1. Traditionally actors represent entities exterior to the system of interest. For exa m-

ple, in Fig. 2c, the Customer actor represents a person coming in the Store to pur-
chase goods.

2. An actor links use cases together by performing a number of roles. For example, in
Fig. 5, the Store Backoffice actor receives the prices by participating in a class of
“transfer Price” use cases and then sends these prices by participating in a sec-
ond class of “transfer Price” use cases.

3. An actor represents, in a use case diagram, an entity coming from another diagram
(or vice-versa). Using the same name for an actor and an entity in another diagram

Lecture Notes in Computer Science 10

establishes this relation. For example, in Fig. 5, the Store Backoffice actor repre-
sents the Store Backoffice shown in the class diagram in Fig. 1.

4. An actor is sometimes used as a means to indicate explicitly which entity realizes a
set of roles. This is done either by using a <<realize>> relationship between an ac-
tor (representing the roles) and an entity (realizing the roles) diagram elements, or
by adding “/name” to an entity identifier to represent its role (where “name” is
the name of an actor).

5. An actor may have a generalization relationship with another actor [p. 3-92, 12].
For example, in Fig. 2c, Manager is a generalization of Cashier. That is, all Manag-
ers are also Cashiers. Or, in other words, the Manager actor type is a subtype of
Cashier in the sense that a Manager can perform all the roles of a Cashier.

The first use illustrates the specificity of the actor concept compared to the other

entity concepts. An actor is used when the designer needs to model only a part of the
behavior of an entity (which is typically the case for entities external to the systems of
interest as the designer does not have to consider or to specify their full behavior).

The second use does not require a specific actor concept. All entities may realize
multiple roles; so all entities may be used in use case diagram for linking two use cases
together. Only the definition of the use case diagram forces the systematic use of
actors.

The third use is quite artificial and is a direct consequence of the use case diagram
definition that allows for the representation of actors only, use cases and possibly one
system. If the actual entities could be represented in the use case diagram (with their
original diagram element as done in Catalysis), the use case diagram would gain in
clarity as the designer could decide to represent the actual entity fulfilling roles rather
than using an indirection via an actor.

The fourth use becomes marginal if use case diagram elements can represent any
entities as participants in the use cases. Actors can still be used when the designer
does not want to specify which entity will realize the role (e.g. definition of a collabora-
tion framework involving multiple use cases). In such cases, an actor represents a
composite role (called “actor role”) played in a specific context (called “actor context”).
The actor context is the set of use cases in which the actor participates. The role
played by one actor in one specific use case is called “use case role”. The actor role is
the composition of all the use case roles. Based on this, we recommend defining actor
as a composition of roles (as opposed to a set of roles, which is not a role). Note: when
needed, the designer explicitly states which entity realizes the actor role. In such
cases, an entity plays a composite role (called “entity role”) in a specific context
(called “entity context”). The entity role is the composition of all actor roles the entity
realizes. The entity context is the composition of the corresponding actor contexts.

The fifth use of actors is to show generalization relationships between participants
in use cases. In our example, the generalization relationship between Manager and
Cashier shows that a Manager can perform the roles of a Cashier. It is not intended to
signify that the role of the Cashier in “sell Goods” is a Manager’s role (only that it is a
role that a manager can realize). It would be preferable to express that a same Employee
could realize the Manager’s roles and the Cashier’s roles (by making explicit who real-

Lecture Notes in Computer Science 11

izes the two sets of roles) rather than to merge these two sets of roles into one (by
using the generalization relationship). This allows the designer to keep both set of
roles separate. The generalization between actors should be carefully used. In general,
the <<realize>> relationship is more appropriate for assigning a set of roles to an en-
tity.

sell
Goods

CustomerCashier

till
Balance

Manager

transfer
Price

transfer
Price

1 1
1

sender receiver receiversender

1

Store
 Backoffice

Cash
Register

Corporate
HQ Backoffice

cashier customer

ca
sh

R
eg

is
te

r

Employee

Fig. 7: Example of use case diagram in which participants are subsystems and actors.

Fig. 7 illustrates our recommendation for the representation of any entity diagram
elements in a use case diagram and to redefine Actor (see Section 4.0). CorporationHQ
Backoffice, Store Backoffice, and Cash Register are represented using the diagram
element corresponding to the actual entity (a subsystem to represent an IT system).
Customer remains an actor, as it is an entity that will remain partially specified (as an
external participant, only its role in the context of “Sell Goods” is interesting to us).
Manager and Cashier remain actors, as they represent roles, which will have to be
mapped to an actual entity. This mapping is made explicit by using the two <<realize>>
relationships. Even if the resulting diagram appears more complex than a diagram using
only actors (more type of entities are represented), it is actually simpler to use (as it
removes unnecessary indirection between diagram elements).

4 Modifications to UML

In this section we discuss the impact of our proposal on UML. We propose the follow-
ing definitions:

Use case [class3] - the specification of the change of state of a group of enti-
ties willing to achieve some purpose. This change of state can be described ei-
ther as the result of the occurrence of one abstract action involving all the en-
tities or as the result of the occurrences of sequences of individual actions in-
volving individual entities.
Use case [instance] – an occurrence of a use case [class].

3 Class is used here with its UML meaning, i.e. specification (or ODP template).

Lecture Notes in Computer Science 12

Actor [class] –the specification of a role defined as the composition of the
roles that a participant of use cases play when interacting with these use
cases..
Actor [instance]- an instance of an actor [class].

By introducing the above definitions in UML and further by relaxing the constraints

on the diagram elements allowed in use case diagrams, we address most of the raised
modeling questions. This implies that current UML case tools need only minimal
changes to apply our extended modeling technique.

To express execution constraints on use cases, the meta-model needs to be ex-
tended to incorporate the missing concepts of: Actor Instance, Subsystem Instance,
and Instance Role4.

SubSystem
Instance

ClassifierRoleClassifier

Component
Class

Instance

ObjectComponent
Instance

Actor

Actor
Instance

SubSystem

InstanceRole

1..* *

+base1..*

*

1..* *

Fig. 8: Elements of meta-model related to the classifier – instance relationship

The proposed modifications to the meta-model are illustrated in Fig. 8. They make it
more consistent as they remove some exceptions (Classifier concepts without corre-
sponding Instance concepts).

5 Application of our Suggestions

In Section 2, we presented “classic” use case models (Fig. 1 and Fig. 2). Fig. 7 and Fig.
9 present analog models that reflect the use of our new definitions of use case and
actor. Note the consistency between the class diagram (Fig. 9) and the corresponding
use case diagram (Fig. 7), which is not the case in the classic models (Fig. 1 and Fig. 2).

4 We name the meta-class InstanceRole rather than RoleInstance to be consistent with Classifi-

erRole.

Lecture Notes in Computer Science 13

Company

Corporate HQ Store

*

*

*

1

1

Corporate
HQ Backoffice

Store
 Backoffice

Cash
Register

1 manages

*

1 *
Employee

Fig. 9: Class diagram describing Company organization

Our new use case modeling technique can be compatible with the standard UML
technique by:

1. Allowing optional representation of use case roles (in Fig. 7 the use case roles
in “till Balance” are not specified).

2. Allowing the use of a rectangle around a set of use cases to represent that an
actor participates in all use cases represented in the rectangle. Note that a use
case diagram might have more than one of these rectangles.

Sometimes, roles are difficult to name. As the roles are bound to the use case, it is

possible to use the same name to denote an actor and its roles in the use cases. This
name might start with a capital letter when denoting an actor and a lower case when
denoting the role. In our example in Fig. 7, Cashier has the “cashier” role in the “sell
Goods” use case. This convention is consistent with the one used in class diagrams
to denote AssociationEndRole.

6 Future Work

In this paper, we proposed new definitions for actor and use case, as well as the addi-
tion of new classes to the UML meta-model. An advantage with these changes is that
all entities may be represented in all UML diagrams. The notational techniques, that
we propose for use case and use case instance diagrams, are similar from those of
class diagrams and interaction diagrams. We believe that this is more than a mere co-
incidence: the essence of these diagrams is the same, however they differ by their
notational techniques. We believe that they can be integrated or unified. Further work
needs to be done towards this integration. The results would simplify UML further
and would lead to the following benefits: (1) simpler utilization, (2) better specification
capabilities, and (3) simplification of case tools.

Lecture Notes in Computer Science 14

Conclusion

Use cases are the modeling technique of UML for formalizing the functional require-
ments placed on systems. In this paper, we have shown several quite important limita-
tions of this technique. It is not possible to model the context of a system beyond its
immediate environment (e.g., if two actors exchange information related to their use of
a system, this communication cannot be shown in a use case diagram). Likewise, it is
impossible to show how several systems are related, even though those systems sup-
port a same business process. Reuse opportunities for use case specifications are
denied, because use case specifications are directly tied to their associated actors.
And execution constraints between use case occurrences cannot be shown or speci-
fied in any way.

These limitations can be overcome to some extent by the realization of multiple
models and multiple diagrams of various types. But the more diagrams and models
there are, the larger the amount of work to be done, and there is the problem of speci-
fying and maintaining the relationships between all these models and diagrams. In this
paper, we showed that another approach was possible and quite effective.

This approach relies on three principles: making the roles of use case participants
explicit, representing use case participants with their actual diagram elements, and
treating the system as any other use case participants. These three principles would
require very limited changes to UML: the definitions of actor and use case must be
revised.

A complementary idea is to enable modeling at the level of use case occurrences
and actor instances (the diagrammatic techniques are borrowed from those of interac-
tion diagrams). We think that modeling at this level is invaluable for relating use cases
together and for expressing execution constraints between them. The necessary
changes to UML are again quite modest. The meta-model needs to be extended to
incorporate the missing concepts of: Actor Instance, Subsystem Instance, and In-
stance Role.

Quite importantly, all the modifications we propose for UML increases its consis-
tency. As a result, they not only contribute to make UML a more expressive specifica-
tion language, they also make it a simpler language to understand and use.

Acknowledgments

John Donaldson (Compaq Professional Services, Geneva, Switzerland) and Frederic
Bouchet (Nortel Professional Networks, Bussigny, Switzerland) helped to identify the
problems of modeling the reengineering of a business process at the abstraction level
of IT systems. Special thanks to an anonymous reviewer for providing us with numer-
ous useful suggestions.

Lecture Notes in Computer Science 15

References

1. D’Souza Desmond F., Wills Alan Cameron: Objects, Components, and Frameworks with
UML – The Catalysis Approach. Addison-Wesley (1999) (ISBN 0-201-31012-0).

2. Genilloud Guy, Wegmann Alain: On Types, Instances, and Classes in UML. European
Conference - Object-oriented Programming (ECOOP), Sophia-Antipolis, France (2000)
(http://icawww.epfl.ch).

3. Genilloud Guy, Wegmann Alain: A Foundation for the Concept of Role in Object Model-
ling. Enterprise Distributed Object Computing Conference (EDOC), Makuhari, Japan.
(2000) (http://icawww.epfl.ch).

4. Graham Ian: Requirements Engineering and Rapid Development: an Object-oriented ap-
proach. Addison-Wesley (1998) (ISBN 0-201-36047-0).

5. Hruby Pavel: Structuring Specification of Business Systems with UML (with an Emphasis
on Workflow Management Systems). OOPSLA Workshop: Business Object Design and
Implementation IV: From Business Objects to Complex Adaptive Systems, Vancouver
B.C. (1998).

6. ISO/IEC ITU-T: Open Distributed Processing – Basic Reference Model – Part 2: Founda-
tions. Standard 10746-2, Recommendation X.902 (1995) (http://isotc.iso.ch
/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm).

7. Jacobson Ivar, Christerson Magnus, Jonsson Patrick, Övergaard Gunnar: Object-Oriented
Software Engineering. Addison-Wesley (1992) (ISBN 0-201-54435-0).

8. Jacobson Ivar, Ericsson Maria, Jacobson Agneta: The Object Advantage – Business Proc-
ess Reengineering with Object Technology. Addison-Addison Wesley (1995) (ISBN 0-
201-42289-1).

9. Kellomäki Pertti, Mikkonen Tommi: Design Templates for Collective Behavior. European
Conference – Object-oriented Programming (ECOOP), Sophia-Antipolis, France (2000)
277 – 295.

10. Lakoff George: Women, Fire and Dangerous Things – What Categories Reveal about the
Mind. Chicago Press (1987) (ISBN 0-226-46804-6).

11. Li Qing, Wong Raymond: Multifaceted object modeling with roles: A comprehensive
approach. In: Information Sciences 117, Springer-Verlag, (1999) 243-266.

12. OMG: Unified Modeling Language Specification, Version 1.3 (1999) (www.omg.org).
13. Reenskaug Trygve: UML Collaboration and OOram semantics – New version of green

paper. 2nd ed, Nov. 8, 1999 (http://www.ifi.uio.no/~trygver/documents).
14. Reenskaug Trygve, Wold Per, Lehne Odd Arild, Working With Objects: The OOram Soft-

ware Engineering Method. Manning Publications (1996) (ISBN 0-13-452930-8).

