
© IEEE Computer Society Press 1

Published in:
Proceedings of Second IEEE International Symposium on Requirements Engineering (RE’95), York, UK, March 1995.

Abstract

This paper presents the idea of Usage Oriented Require-
ments Engineering, an extension of Use Case Driven Anal-
ysis. The main objective is to achieve a requirements
engineering process resulting in a model which captures
both functional requirements and system usage aspects in
a comprehensive manner. The paper presents the basic
concepts and the process of Usage Oriented Requirements
Engineering, and the Synthesized Usage Model resulting
from this process. The role of this model in system develop-
ment, and its potential applications are also discussed.

1. Introduction

When dealing with complex systems, it does not seem fea-
sible to go directly, in one step, from an informal require-
ments description provided by the customer to a formal
requirements specification. Too rapid formalization of
requirements may have several negative consequences,
such as a substantial semantic gap between the require-
ments description and the requirements specification or
incompleteness of the latter. It is also very difficult to pro-
duce a formal specification without a deep understanding
of what the customer and the end users expect from the
system, and how they intend to employ it in practice. This
kind of information is rarely provided at the outset of sys-
tem development.

This paper presents Usage Oriented Requirements
Engineering (UORE) which tries to address the above
issues in a structured and systematic way. The concept of
UORE originates from Use Case Driven Analysis
(UCDA), a key contribution of the Objectory method [1].

Our objective is to improve the original UCDA by
extending it with a synthesis phase where separate use
cases are integrated into a Synthesized Usage Model
(SUM). This model captures both functional requirements
and system usage aspects. To facilitate this integration,
UORE introduces a formal, graphical representation of use
cases and abstraction mechanisms for representing user
and system actions.

2. Use Case Driven Analysis

This section presents and discusses UCDA as defined in
the Objectory method [1]. The basic concepts of UCDA
are actors and use cases. An actor is a specific role played
by a system user, and represents a category of users that
demonstrate similar behaviour when using the system. By
users we mean both human beings, and other external sys-
tems or devices communicating with the system. An actor
is regarded as a class, and users as instances of this class.
One user may appear as several instances of different
actors depending on the context.

A use case is a system usage scenario characteristic of a
specific actor. During the analysis we try to identify and
describe a number of typical use cases for every actor. Use
cases are expressed in natural language with terms from
the problem domain. The descriptions of actors and use
cases form the Use Case Model (UCM).

Advantages. UCDA helps to cope with the complexity of
the requirements analysis process. By identifying and then
independently analysing different use cases we may focus
on one, narrow aspect of the system usage at a time.

Since the idea of UCDA is simple, and the use case
descriptions are based on natural concepts that can be
found in the problem domain, the customers and the end
users can actively participate in requirements analysis. In
consequence, the developers can learn about the potential
users, their actual needs, and their typical behaviour.

Disadvantages. The lack of synthesis is probably the main
drawback of UCDA. The Use Case Model that we get from
UCDA is just a loose collection of use cases. In the subse-
quent phases of Objectory, these use cases are directly
used to create the so-called Analysis Model. This model
describes the structure of the system and is a step towards
design. What we really would like to get from require-
ments analysis, is a model which captures the functional
requirements and system usage, without any design
aspects.

Improving the Use Case Driven Approach to Requirements Engineering *

Björn Regnell, Kristofer Kimbler, Anders Wesslén

Dept. of Communication Systems, Lund University, Sweden
(bjornr, chris, wesslen)@tts.lth.se

* This work is supported by National Board for Industrial and Technical
Development, (NUTEK), Sweden, Reference Dnr: 93-2850.

© IEEE Computer Society Press 2

Although use cases are perfect material for creating test
cases, the UCM resulting from UCDA cannot be used for
automatic generation of test cases. This limits its applica-
bility as a reference model for validation and verification.

There are also several problems with the interpretation
of the actor and use case concepts, as defined in Objectory.
No clear definition of the semantics of use cases, and no
consistent guidelines on how the use cases should be
described are provided. It is not clear what kind of events
we should concentrate on while describing use cases;
external stimuli-responses only, or internal system activi-
ties as well. Objectory treats use cases as classes with
inheritance-like relations, but, at the same time, they are
seen as sequences of events. Object-orientation purists
tend to treat everything as objects, but here we find the
class interpretation rather artificial and confusing.

Objectory associates every use case with a specific
actor, but, at the same time, allows use case descriptions in
which several actors are involved. Moreover, an actor is
defined as a specific role played by a user. This means that,
in extreme, one physical user can appear as different actors
in a single use case. These uncertainties leave too much
room for free interpretation of the actor and use case con-
cepts, and may cause a lot of confusion.

The number of use cases may be very large in cases of
complex systems. Since produced independently, there
might be inconsistencies between use case descriptions.
Moreover, use cases might be contradictory, as they
express goals of different actors. Objectory does not offer
support for resolving such problems.

A specific use case can not occur in every situation.
What we need for each use case is a specification of the
context in which it can be triggered and successfully
accomplished. This issue is not addressed by UCDA.

In general, UCDA, as defined in Objectory, does not
fully address the following issues:

• Use cases are not independent. They may overlap, occur
simultaneously, or influence each other.

• Use cases occur under specific conditions. They have invoca-
tion and termination contexts.

• The level of abstraction of use cases and their length are mat-
ters of arbitrary choice.

• The use cases can, in practice, guarantee only partial cover-
age of all possible system usage scenarios.

3. Usage Oriented Requirements Engineering

The proposed UORE process aims at removing some of
the weaknesses of UCDA stated in the previous section.
UCDA is extended with a synthesis phase, where use cases
are formalized and integrated into a Synthesized Usage
Model. The SUM captures functional requirements and
system usage in a more formal way than the UCM.

The SUM is intended to be a part of requirements speci-
fication, and a reference model for validation and verifica-
tion. The SUM captures the following related aspects:

• Categories of system users and their objectives
• Domain objects, their attributes, and operations
• Stimuli and responses of user-system communication
• User and system actions, their possible combinations and

usage contexts
• Scenarios of system usage, their flows of events, and trigger

conditions.

The process of UORE consists of two phases, analysis and
synthesis, as shown in fig. 1. The analysis phase has an
informal requirements description as input, and produces
the use case model containing descriptions of actors and
use cases. This model, in turn, is used as input to the syn-
thesis phase which formalizes the use cases, integrates
them, and creates the synthesized usage model.

3.1 Analysis phase

The analysis phase of UORE resembles the original
UCDA, and consists of two interrelated activities:

1. Identification of use cases and actors
2. Unification of terminology.

Synthesized Usage Model

SUM

Unification

Integration

ANALYSIS

SYNTHESIS

Requirements Description

Formalization

Verification

Identification

Use Case Model

UCM

FIGURE 1. The process of UORE

Abbreviations
AIO Abstract Interface Object
AUS Abstract Usage Scenario
SUM Synthesized Usage Model
UCDA Use Case Driven Analysis
UCM Use Case Model
UCS Use Case Specification
UORE Usage Oriented Requirements Engineering

© IEEE Computer Society Press 3

The first activity aims at finding and describing actors and
use cases. The second activity unifies the terminology of
these descriptions. For this purpose the problem domain
objects and their attributes are identified and described in a
data dictionary. The focus is on entities manipulated by the
actors, externally observable system operations, and ele-
ments of the user interface.

The unification of terminology is important, especially
as different use cases may be described by separate per-
sons or groups. The terminology is gradually extended and
revised as more and more use cases are identified. The uni-
fied terminology is enforced by inspections. The two activ-
ities of the analysis phase are performed iteratively.

To illustrate UORE we will use a well-known example
of an Automated Teller Machine (ATM) [2]. ATM offers
basically two services: cash withdrawal and account con-
trol. In fig. 2 we show examples of actors and use cases.

Differences. As mentioned above, the analysis phase of
UORE resembles the Objectory version of UCDA. There
are, however, a number of issues that make our approach
different:

• Changed semantics of actors and use cases
• Identification of use case contexts
• Strict application of the single-actor view
• Explicit unification of terminology
• Structured description of use cases.

In UORE, an actor represents a user (a person or an exter-
nal system) that belongs to a set of users with common
behaviour and goals. An UORE actor does not necessarily
model a single role played by a user, as in Objectory. In
our opinion, the single-role semantics of actors may lead to
use cases which address too narrow aspects of system
usage. This, in turn, disables analysis of how different sys-
tem operations interact. (Some systems may allow a user to
play multiple roles at the same time.)

Unlike Objectory, which treats the use cases as classes,
we regard them just as examples of system usage. We con-
sider use cases as “experimental material” which will be
further investigated in the synthesis phase.

In UORE, each use case describes the system behav-
iour, as seen by one actor only. This single-actor-view
approach makes the use case concept simpler. We assume
that the actor involved in a use case communicates with
other actors through the system. No situations with direct
actor-to-actor communication are modelled. In other
words, the narration of the use cases distinguishes only
between the actor and the “rest”. If a system usage sce-
nario involves several actors, this scenario should be mod-
elled by several use cases, one for each involved actor. This
provides a clear criterion for constructing use case descrip-
tions and reduces their complexity. To conclude, we can
say that the UORE principle for use case definition is:
“multiple roles, yes; multiple actors, no”.

In UORE, the description of each use case contains a
list of conditions defining a context in which the specific
flow of events of the use case can occur. The invocation
conditions and termination conditions define the system
state before and after the use case, while the flow condi-
tions state the assumptions about the user and system
behaviour during the use case. A flow condition is not nec-
essarily true at the invocation of the use case, but it
becomes true at some point in the use case. A flow condi-
tion is thus a temporal assertion that implicitly refers to a
“future” point in the flow of events of the use case. These
different conditions are an important aid in the synthesis
phase for finding relations between use cases.

In order to avoid some typical problems with natural
language descriptions, all the use cases should use the
same terminology and format. The terminology of these

1. Withdraw Cash, normal case
Actor: “ATM customer”
1.IC Invocation Conditions:
1.IC.1 The system is ready for trans-

actions.
1.FC Flow Conditions:
1.FC.1 The user’s card is valid.
1.FC.2 The user enters a valid code.
1.FC.3 The user enters a valid amount.
1.FC.4 The machine has the required

amount of cash.
1.FE Flow of Events:
1.FE.1 The user inserts the card.
1.FE.2 The system checks if the card is

valid.
1.FE.3 A prompt for the code is given.
1.FE.4 The user enters the code.
1.FE.5 The system checks if the code is

valid.
1.FE.6 A prompt “enter amount or

select balance” is given.
1.FE.7 The user enters the amount.
1.FE.8 The system checks if the

amount is valid.
1.FE.9 The system collects the cash.
1.FE.10 The cash is ejected.
1.FE.11 A prompt “take cash” is given.
1.FE.12 The user takes the cash.
1.FE.13 The card is ejected.
1.FE.14 A prompt “take card” is given.
1.FE.15 The user takes the card.
1.FE.16 The system collects receipt

information.
1.FE.17 The receipt is printed.
1.FE.18 A prompt “take receipt” is

given.
1.FE.19 The user takes the receipt.
1.TC Termination condition:
1.TC.1 The system is ready for trans-

actions.

2. Withdraw Cash, amount invalid
Actor: “ATM customer”
2.IC Invocation Conditions:
2.IC.1 Same as 1.IC.1.
2.FC Flow Conditions:
2.FC.1 Same as 1.FC.1 - 1.FC.2.
2.FC.2 The user enters an invalid

amount.
2.FE Flow of Events:
2.FE.1 Same as 1.FE.1 - 1.FE.8
2.FE.2 The “invalid amount” message

is given.
2.FE.3 A prompt for “retry” is given.
2.FE.4 The user aborts the transaction.
2.FE.5 Same as 1.FE.13 - 1.FE.15
2.TC Termination condition:
2.TC.1 Same as 1.TC.1.

3. Account Control, normal case
Actor: “ATM customer”
3.IC Invocation Conditions:
3.IC.1 Same as 1.IC.1.
3.FC Flow Conditions:
3.FC.1 Same as 1.FC.1 - 1.FC.2.
3.FE Flow of Events:
3.FE.1 Same as 1.FE.1 - 1.FE.6.
3.FE.2 The user selects “balance”.
3.FE.3 The system collects balance

information.
3.FE.4 The balance is displayed.
3.FE.5 Same as 1.FE.13 - 1.FE.19
3.TC Termination condition:
3.TC.1 Same as 1.TC.1.

Problem domain objects in bold face.
Defined and unified terminology in italics.

FIGURE 2. Use case description examples

Actors:
ATM customer – uses the ATM to withdraw cash or control the account balance.
ATM supervisor – supervises and maintains the operation of the ATM.
ATM database – the external system maintaining account information.

© IEEE Computer Society Press 4

descriptions is unified across different use cases, as dis-
cussed above. The examples in fig. 2 show a possible struc-
ture of use case descriptions. A systematic numbering of
events supports traceability within and between the models
of the analysis and synthesis phases. Furthermore, when
describing a use case, we can use such numbers to refer to
identical conditions and sequences of events in other use
cases, in order to make the description shorter.

3.2 Synthesis phase

The synthesis phase formalizes the use cases, integrates
them, and creates the Synthesized Usage Model. The syn-
thesis phase consists of three activities:

1. Formalization of use cases
2. Integration of use cases
3. Verification.

These three activities are carried out in an iterative manner,
until an agreement upon the correctness and completeness
of the SUM is reached. In the following sections we will
describe each activity and the concepts they use.

3.3 Formalization activity

The formalization activity aims at producing a formal Use
Case Specification (UCS) for each use case identified in
the analysis phase. The product of this activity is a collec-
tion of UCS’s, represented in the formal, graphic language
of message sequence charts (an extension of [3]). Each
UCS expresses the temporal ordering of user stimuli, sys-
tem responses, and atomic operations.

The formalization activity has the following steps:

1. Identification of abstract interface objects
2. Identification of atomic operations
3. Creation of one UCS for every use case.

The concepts used in the formal representation of user-sys-
tem communication, and the steps necessary in the crea-
tion of a UCS are explained below.

Abstract interface objects. The user never communi-
cates directly with a software system. Some sort of inter-
face is always involved in this communication. The
interface transforms the user’s stimuli into messages (soft-
ware events) and, messages from the system into responses
comprehensible to the user. This transformation is not nec-
essarily straightforward. The three basic elements of user-
system communication; the user, the interface and the sys-
tem, are inherently parts of system usage, consequently
they can be found in use case descriptions.

The entities that form the nature of user-system commu-
nication will be called Abstract Interface Objects (AIO).
They are abstract in the sense that they do not necessarily
represent concrete interface objects. Instead, they model
responsibilities (see [4]) that can be mapped to one or more

real interface objects. The intention is to avoid any design
decisions at this stage.

Identification of abstract interface objects is achieved by
examining all the use cases and the problem domain termi-
nology, and searching for entities that take part in the
actor-system communication. An AIO is characterized by
its sets of stimuli, responses, messages, and states.

Atomic operations. On a conceptual level we can describe
the elements of the system’s capabilities by atomic opera-
tions. They are operations performed by the system, and
have effect on the users. A system operation is atomic from
an actor’s point of view, if it does not require any commu-
nication with this actor during its execution. However,
other actors may see the same operation as a combination
of other atomic operations and communication protocols.
For example, the operation card validation is atomic from
the ATM Customer actor’s point of view, although from the
ATM Database actor’s point of view it is a sequence of
operations and communications.

The atomic operations are identified from the use cases
by focusing on system operations that do not require inter-
action with the actor involved in the use case. Every sys-
tem action is described and given a unique name to be used
uniformly in all use case specifications. We will not elabo-
rate here on the specification of atomic operations.

Formal use case specification. The formalization activity
produces formal use case specifications. After identifying
all abstract interface objects and atomic operations, we
transform the flow of events of every use case into a UCS
that models the temporal relations between AIO stimuli/
responses/states and atomic operations.

We illustrate the notation of UCS by our ATM example.
The UCS corresponding to the use case “withdraw cash,
normal case” is shown in fig. 3. The left-most time axis of
fig. 3 represents the specified actor. The right-most time
axis represents the system. Between the actor and the sys-
tem we have the different AIO’s involved in this use case.
The AIO states are drawn as diamonds on the AIO time
axis, and the atomic operations are drawn as boxes on the
system’s time axis.

3.4 Integration activity

The integration activity aims at merging different use case
specifications and producing a Synthesized Usage Model.
The SUM consists of a collection of usage views, one for
each actor. The integration activity consists of the follow-
ing three steps:

1. Identification of user and system actions
2. Creation of abstract usage scenarios
3. Integration of abstract usage scenarios.

card message receiptnumber ATM SystemATM Customer

FIGURE 3. Use Case Specification

responder receiver printer
cash
dispenserreader

ready ready ready ready

insert card

card in
account number

card
validation

card okprompt for code

code msg
enter code

code
code

code
validation

code okprompt for amountenter amount

amount
amount

amount
validation

amount ok

cash
collection

cash okamount

prompt for cash
take cash

cash taken
cash taken

cash cash prepared

eject card

card card ejected

card msgtake card
prompt for card

take card
card taken

collect receipt
information

print receipt info
printedreceipt

prompt for receipt

take receipt

take receipt
receipt taken

ready msg

FIGURE 4. Abstract Usage Scenario

Ready

insert card

card validation

enter code

code validation

amount validation

cash collection

take cash

take receipt

Ready

account number

card ok

code

code ok

amount

amount ok

cash

cash taken

receipt taken

take card

card taken

collect receipt info

receipt

enter amount
or select balance

name name

Stimuli, Response,
AIO state

Abstract
Interface
Object

or System Message

name

SystemAtomic
Operation

L1 name name

Label User System

Legend:

Time axis Action Action
Message

Legend:
m

*1

*2

1*

2*

Withdraw cash - normal case

Note: For the example in 3.4, two UCS parts are marked *1 and *2, and correspond to the actions 1* and 2*.

or select balance

ready

code value

enter msg

amount value

cash

cash msg

ready

card out

ready

print

receipt msg

ready

ready

Actor

© IEEE Computer Society Press 6

User and system actions. In a use case, the control shifts
between the user and the system. When we formally repre-
sent system usage we would like to have an abstraction
mechanism that conceals the detailed protocol of the inter-
action during the user-controlled parts and the system-con-
trolled parts of a use case. We use the terms user actions
for protocols where the user is in control, and system
actions for protocols where the system is in control.

The first step of the integration activity aims at extract-
ing such abstract protocols. Hence, in several UCS’s we
can identify actions such as “enter code” and “cash collec-
tion”, which form a demarcated protocol with a sequence
of related events, resulting in a single message. All such
UCS parts are uniformly defined with a name and descrip-
tion.

To illustrate this, in fig. 3 a UCS part is marked with *1,
which corresponds in fig. 4 to the user action 1* “enter
code” and the resulting message “code”. Similarly, the
UCS part denoted *2 corresponds to the system action
“cash collection” and message “cash”, marked with 2*.

An action can have different outcomes. For example,
the system action “code validation” may result in the
events “code OK” or “code invalid”. An action can thus
represent a collection of similar protocols, with different
outcomes. An action can also be seen as a state where the
user or the system tries to accomplish some specific task.
The user and system actions could be described internally
by finite state machines, as proposed in [5]. This possibil-
ity is, however, not yet incorporated into UORE.

Abstract usage scenarios. Using the abstraction mecha-
nisms of user and system actions, use case specifications
can be expressed in a more condensed way. Every UCS is
transformed into an Abstract Usage Scenario (AUS),
drawn as a sequence of user actions (bubbles) and system
actions (boxes) interconnected with transitions (arrows)
that represent the resulting messages of each action. The
invocation and termination context of an AUS is indicated
by labels (circles). A label denotes an external system
state, i.e. a subset of the carthesian product of all AIO
states. In fig. 4 a sample AUS is shown.

The main purpose of creating AUS’s, is to make the syn-
thesis feasible even if we have a very large number of use
cases. By raising the abstraction level we hide information,
to make “clean threads” and then “weave them together” in
the last step of integration.

Synthesized Usage Model. The SUM consists of one
usage view per actor. A usage view is synthesized from all
Abstract Usage Scenarios produced for one specific actor.
A usage view is created by finding similar parts of Abstract
Usage Scenarios and merging them. The result is a directed
graphs with three types of nodes: user actions, system
actions, and labels. These nodes have the same meaning as
in Abstract Usage Scenarios. Labels are used to maintain
traceability between usage views and AUS’s. Additional
labels can be introduced to divide large graphs into sepa-
rate sub-diagrams, thus promoting scalability. An example
of a usage view is given in fig. 3. (This usage view is an
integration of more use cases than shown in the examples
in fig. 2.)

To summarize, the SUM contains descriptions of the
following elements:

1. Actors
2. Usage views
3. Use case specifications
4. Abstract interface objects
5. User actions and system actions
6. Data dictionary with problem domain objects.

ready

insert card

card validation

enter code

code validation

amount validation

cash collection

take cash

take receipt

ready

account number

card ok

code

amount

amount ok

cash

cash taken

receipt taken

take card

card taken

collect receipt info

receipt

balance

code ok

card invalid

take card

card taken

code
fail

re-enter code

code

code invalid

retry validation

code

code
invalid

too many errors

disclaim card

amount
fail

amount
invalid

re-enter amount

amount

aborted

aborted

aborted

Legend:

System Action User Action LabelMessage

mx y z

ready

FIGURE 5. The usage view for “ATM Customer”

enter amount
or select balance

balance
selected

collect balance info

abort

abort

abort

abort

balance info

aborted

ok

© IEEE Computer Society Press 7

3.5 Verification activity

The purpose of the verification activity is to obtain a con-
sistent and complete SUM. There are two verification steps
related to the formalization activity and integration activity
respectively:

1. Verification of UCS
2. Verification of SUM.

The verification of a UCS is performed as a rigorous
inspection where the UCS is compared with the corre-
sponding use case in the UCM. The reviewers check that
the UCS is a correct transformation of the informal use
case description, meaning that everything in the use case is
contained in the UCS and that the objects in all UCS’s are
consistently defined.

The second verification step aims at ensuring that the
SUM completely covers every UCS. Here is a great poten-
tial for automatic verification, where a tool could check
that every AUS is a possible path in the corresponding
usage view. It is possible that, during the synthesis phase,
new user and system actions are discovered and incorpo-
rated in a usage view, thus making more usage scenarios
valid in addition to the defined AUS’s. In the verification of
the SUM, such additional usage scenarios can be created
by traversing the graphs of the usage views. In this way,
the “experimental material” of use cases is used to build a
model that enables the discovery of yet unidentified sce-
narios, and thus making the SUM a model that covers more
than the initial experiments.

4. Applications of SUM

The Synthesized Usage Model is designed to be used as a
reference model for the remaining phases of system devel-
opment. The SUM captures not only functional require-
ments, but also system usage. The SUM is a source of
information about what the system is supposed to do, and
how it should behave from the user’s point of view in dif-
ferent usage contexts. Therefore, the SUM can form a
backbone for the whole development process including
system design, verification, and validation. This role of a
formal usage model in system development is discussed in
[6]. In the following sections we discuss the potential ben-
efits of SUM in system design as well as in verification and
validation. A report on practical experiences in the field of
telecommunication is also given.

4.1 System design

The SUM captures functional and behavioural aspects of
the system that are important for system design. The user
and system actions are abstractions of user-system com-
munication protocols that produce system stimuli and
responses.

The semantics of an action is defined by the different
contexts in which it can occur, and the set of abstract inter-
face objects it encapsulates. This information can be
directly applied in the external design, where the mapping
of AIO’s to actual interface objects, and the concrete shape
of the user interface is determined. The SUM can also be
used for creating a prototype of the user interface.

The set of atomic system operations and their usage
contexts is a valuable information for internal design. Here
we have to consider the fact that some system operations
can be atomic for one actor, but not for another. This infor-
mation can be useful for finding a robust object structure of
the system, and for allocating functionality to objects, as
suggested in [1].

4.2 System verification and validation

In order to ensure the correctness of the system implemen-
tation and requirements traceability, the system can be ver-
ified against the SUM by means of testing. The possibility
of automatic generation of test cases is one of the most
important properties of the SUM. Each usage view of the
SUM can be used to generate test cases in the form of “re-
created” usage scenarios. These scenarios contain both
stimuli to the system and the expected system responses,
thus enabling automatic verification of the test results.
Though a strategy of test case selection is beyond the
scope of this paper, in the next paragraph we briefly dis-
cuss the possibility of using the SUM for statistical usage
testing.

Statistical usage testing. In statistical usage testing [7],
test cases are derived from a usage model. This model
describes both functional and statistical properties of sys-
tem usage. Experiences with the so-called state hierarchy
model [8, 9], shows that it is feasible to generate test cases
automatically from a model of system usage. These test
cases are samples of the expected system usage and have
the necessary statistical properties that enable certification
of the system’s reliability.

Statistical usage testing is a black-box testing technique,
as it derives the usage model from the requirements speci-
fication. Unfortunately, there is a substantial gap between
the usage model required for statistical usage testing and
the traditional requirements specification. What we need
from requirements analysis is an explicit description of
system usage. By using the SUM as an element of require-
ments specification, we can possibly bridge this gap and
make test preparation easier. By this approach, test prepa-
ration can concentrate on modelling statistical properties
by adding probabilities to the SUM.

4.3 Practical experiences

Though UORE, as described in this paper, has been used
only in minor case studies, the key elements of the method

© IEEE Computer Society Press 8

(synthesis of use cases, single-actor views, and SUM) have
already been applied in practice. In the analysis of interac-
tions between pan-European telecom services, these ele-
ments of UORE have yielded positive results [10, 11].

The problem of undesired feature interactions is a major
threat to the rapid deployment of new telecom services. An
interaction occurs when one service feature changes or dis-
ables the operation of another feature. One of the
approaches to this problem is to detect and resolve interac-
tions during requirements analysis.

By applying the use case driven approach to the analysis
of the pan-European candidate services, and synthesizing
the use cases, a behavioural model of these services and
their features was obtained. This model corresponds to one
usage view of the SUM, i.e. it represents the behavioural
aspects of the services as seen by one actor, service user.
This model was analysed by a custom-designed tool that
automatically detected a large number of potential feature
interactions. The tool used the possibility of re-creating
service usage scenarios (in this case different scenarios of
telephone calls) from the model, as described in [12] and
[10].

5. Conclusions

The ideas introduced in this paper clarify and formalize
several important aspects of UCDA. It is our belief that
UORE is a significant improvement of UCDA, by its crite-
ria for finding, describing, formalizing, and synthesizing
use cases. However, it is still untried on the large scale, and
it remains to be proven that UORE is easier to use and
gives a better support in requirements engineering than the
original UCDA. By empirical studies we hope to prove the
benefits of the SUM as a system reference model.

In summary, the main contributions are:

• The improvement of the actor and use case concepts
• The formalization of use case descriptions
• The idea of use case synthesis
• The Synthesized Usage Model
• The process of Usage Oriented Requirements Engineering.

There are still a number of issues to be addressed in future
research, for example:

• Formal description of the invocation, termination, and flow
conditions of use cases

• Formal description of procedural and non-procedural proper-
ties of user and system actions

• Further refinement of use case synthesis – integration of dif-
ferent usage views in the SUM

• Formal definition of the syntax and semantics of SUM
• Transformation of the SUM into a test model suitable for sta-

tistical usage testing
• Automation of verification and validation of the test results

by using SUM as a reference model of system behaviour.

Acknowledgements

We would like to thank the following persons who helped
in reviewing this paper: Claes Wohlin, Daniel Söbirk,
Henrik Cosmo, Helen Sheppard, and Anna-Sofia Maurin.

References

[1] Jacobson, I., et al. Object-Oriented Software Engi-
neering, A Use Case Driven Approach, Addison-
Wesley, 1992.

[2] Sommerville I., Software Engineering, fourth edition,
Addison-Wesley, 1992.

[3] ITU-T Recommendation Z.120. Message Sequence
Chart (MSC), Telecommunication Standardization
Sector of International Telecommunication Union,
1993.

[4] Wirfs-Brock, R., et al. Designing Object-Oriented
Software, Prentice Hall, 1990.

[5] Zave P. “Feature Interaction and Formal Specification
in Telecommunications”, IEEE Computer, August
1993.

[6] Wohlin C., Regnell B., Wesslén A. and Cosmo H.
“User-Centred Software Engineering - A Compre-
hensive View of Software Development”, Proceed-
ings of Nordic Seminar on Dependable Computing
Systems, Denmark, August 1994.

[7] Mills, H. D., Dyer, M. and Linger, R. C., “Cleanroom
Software Engineering”, IEEE Software, pp. 19-24,
September 1987.

[8] Runeson, P. and Wohlin, C., “Usage Modelling: The
Basis for Statistical Quality Control”, Proceedings of
10th Annual Software Reliability Symposium, pp. 77-
84, Denver, Colorado, USA, 1992.

[9] Wohlin, C. and Runeson, P. “Certification of Soft-
ware Components”, IEEE Transactions on Software
Engineering, Vol. 20, No. 6, pp 494-499, 1994.

[10] EURESCOM Project EU-P230, Enabling pan-Euro-
pean services by cooperation of PNO’s IN platforms,
Deliverable 4, EURESCOM, Heidelberg, December
1994.

[11] Kimbler K., Kuisch E. and Muller J., “Feature Inter-
actions among Pan-European Services”, Feature
Interactions in Telecommunications Systems, IOS
Press, Netherlands, 1994.

[12] Kimbler K. and Söbirk D., “Use Case Driven Analy-
sis of Feature Interactions”, Feature Interactions in
Telecommunications Systems, IOS Press, Nether-
lands, 1994.

