
SWEED

Requirements Analysis with
Use Cases

Theory (9 Lessons)

Shane Sendall and Alfred Strohmeier
Swiss Federal Institute of Technology in Lausanne

Software Engineering Lab

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 2

SWEED

Course Objectives
s Upon completion of this course, participants

should be able to:
u write use cases that capture functional requirements of a

system under development;
u understand the role of use cases in requirements analysis;
u understand the importance of capturing the functional

requirements without going into design/implementation detail;
u understand the relationship between use cases and non-

functional requirements;
u understand the relationship of use cases to business process

modeling;
u understand what makes an effective use case;
u understand the limitations of use cases and be aware of other

models available that can make use cases more precise and
rigorous.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 3

SWEED

Course Overview

s Theory
u Requirements Engineering and Use Cases
u Motivation for Use Cases
u Use Case Basics
u Use Cases Tips and Tricks
u Use Cases in UML
u Advanced Issues in Writing Use Cases
u Relating Use Cases with Business Process Modeling
u Relating Use Cases with Non-Functional Requirements
u User Interface Description with Conversations

s Exercises
s Case Studies

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 4

SWEED

Bibliography
s Books
F. Armour, and G Miller; Advanced Use Case Modeling. Object Technology Series, Addison-Wesley 2001.
D. Bellin and S. Suchman Simone; The CRC Card Book. Addison-Wesley, 1997.
G. Booch, J. Rumbaugh, I. Jacobson; The Unified Modeling Language User Manual. Addison-Wesley 1999.
J. Carroll; Scenario-based Design: Envisioning Work and Technology in System Development. Wiley, 1995.
A. Cockburn; Writing Effective Use Cases. Addison-Wesley 2000.
L. Constantine and L. Lockwood; Software for Use: A Practical Guide to the Models and Methods of Usage-Centered

Design. ACM Press, Addison-Wesley 1999.
M. Fowler; UML Distilled: Applying the Standard Object Modeling Language. Second Edition, Addison-Wesley, 1999.
D. Gause and G. Weinberg; Exploring Requirements: Quality Before Design. Dorset House 1989.
M. Hammer and J. Champy; Reengineering the Corporation. Harperbusiness, 2001.
IBM Object-Oriented Technology Center; Developing Object-Oriented Software: An Experience-Based Approach.

Prentice Hall 1996.
I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard; Object-Oriented Software Engineering: A Use Case Driven

Approach. Addison-Wesley 1992.
B. Kovitz; Practical Software Requirements: A Manual of Content and Style. Manning 1999.
D. Kulak and E. Guiney; Use Cases: Requirements in Context. ACM Press, Addison-Wesley, 2000.
D. Lefffingwell, and D. Widrig; Managing Software Requirements: A Unified Approach. Object Technology

Series, Addison-Wesley 2000.
S. Robertson, and J. Robertson; Mastering the Requirements Process. Addison-Wesley 2000.
D. Rosenberg and K. Scott; Use Case Driven Object Modeling with UML: A Practical Approach. Addison-Wesley, 1999.
R. Ross; The Business Rule Book: Classifying, Defining and Modeling Rules. V 4.0, Business Rules Solutions Inc. 1997.
G. Schneider and J. Winters; Applying Use Cases: A Practical Guide. Addison-Wesley,1998.
P. Texel and C. Williams; Use Cases Combined with Booch/OMT/UML. Prentice Hall, 1997.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 5

SWEED

Bibliography

s Electronic Resources
Alistair Cockburn home page

http://members.aol.com/acockburn/index.html
Cetus -- Architecture and Design: Unified Modeling Language (UML)

http://www.cetus-links.org/oo_uml.html
McBreen Consulting -- Use Case Articles

http://www.mcbreen.ab.ca/papers/UseCases.html
OMG Unified Modeling Language Revision Task Force; OMG Unified Modeling Language Specification; Version

1.4, June 2001.
http://www.celigent.com/omg/umlrtf/artifacts.htm

Resources on Usage-Centered Design (Constantine Lockwood Ltd.)
http://www.foruse.com/Resources.htm

Software Development Magazine Online
http://www.sdmagazine.com/articles/

UseCases.org
http://www.usecases.org/

Use Case Zone
http://www.pols.co.uk/usecasezone/

Wirfs-Brock Associates: Resources
http://www.wirfs-brock.com/pages/resources.html

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 6

SWEED

Bibliography
s Articles
A. Cockburn; Structuring Use Cases with Goals. Journal of Object-Oriented Programming (JOOP Magazine), Sept-Oct

and Nov-Dec, 1997.
E. Ecklund, L. Delcambre and M. Freiling; Change cases: use cases that identify future requirements. OOPSLA ‘96 -

Proceedings of the eleventh annual conference on Object-oriented programming systems, languages, and
applications, 1996. pp. 342 - 358.

M. Fowler; Use and Abuse Cases. Distributed Computing Magazine, 1999. Available at
http://www.martinfowler.com/articles.html

M. Glinz; Problems and Deficiencies of UML as a Requirements Specification Language. Proceedings of the Tenth
International Workshop on Software Specification and Design, San Diego, 2000, pp. 11-22.

T. Korson; The Misuse of Use Cases. Object Magazine, May 1998.
S. Lilly; Use case pitfalls: top 10 problems from real projects using use cases. TOOLS 30, Proceedings of Technology of

Object-Oriented Languages and Systems, 1999, pp. 174-183
R. Malan and D. Bredemeyer; Functional Requirements and Use Cases. June 1999. Available at

http://www.bredemeyer.com/papers.htm
J. Mylopoulos, L. Chung and B. Nixon; Representing and Using Nonfunctional Requirements: A Process-Oriented

Approach. IEEE Transactions on Software Engineering, Vol. 23, No. 3/4, 1998, pp. 127-155.
A. Pols; Use Case Rules of Thumb: Guidelines and lessons learned. Fusion Newsletter, Feb. 1997.
S. Sendall and A. Strohmeier; From Use Cases to System Operation Specifications. UML 2000 - The Unified Modeling

Language: Advancing the Standard, Third International Conference, York, UK, October 2-6, 2000, S. Kent, A.
Evans and B.Selic (Ed.), LNCS (Lecture Notes in Computer Science), no. 1939, 2000, pp. 1-15.

R. Thayer and M. Dorfman (eds.); Software Requirements Engineering. 2nd Edition, IEEE Comp. Soc. Press, 1997.
R. Wirfs-Brock; The Art of Designing Meaningful Conversations. Smalltalk Report, February, 1994.

SWEED

Requirements Analysis with Use
Cases

Theory (9 lessons)

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 8

SWEED

Topics To Cover

s L1: Requirements Engineering and Use Cases
s L2: Use Case Basics I
s L3: Use Case Basics II
s L4: Use Case Tips & Tricks
s L5: Use Cases in UML
s L6: Advanced Issues in Writing Use Cases I
s L7: Advanced Issues in Writing Use Cases II
s L8 Relating Use Cases with Business Process

Modeling & Non-Functional Requirements
s L9: User Interface Descriptions with Conversations

SWEED

Lesson 1

Requirements Engineering and
Use Cases

Requirements Engineering
and Use Cases

Use Case Basics

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 10

SWEEDRequirements Engineering—
Definition

s What is Requirements Engineering?
“...RE is concerned with identifying the purpose of a
software system, and the contexts in which it will be
used.
Hence, RE acts as the bridge between the real world
needs of users, customers, and other constituencies
affected by a software system, and the capabilities
and opportunities afforded by software-intensive
technologies.”

Source: RE ’01, Call for Papers

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 11

SWEED

Definition

s What is a Requirement?
u “A condition or capability needed by a user to

solve a problem or achieve an objective.”
u “A condition or capability that must be met or

possessed by a system or system component to
satisfy a contract, standard, specification, or other
formally imposed document.”

s “The set of all requirements forms the basis
for subsequent development of the system or
system component.”

Source: IEEE Thayer, Dorfman,1997

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 12

SWEED

Kinds of Requirements

ss Functional requirementsFunctional requirements
u capture the intended behavior in terms of services,

tasks or functions the system is required to
perform. [Malan et al. 1999]

u Problem: if too general, ambiguity reigns; if too
specific, design is stifled and leads to a large
document;

u Techniques for writing them
l Use cases,
l Requirements List—“Shall” statements,
l ...

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 13

SWEED

Kinds of Requirements

ss NonNon--functional requirementsfunctional requirements (or system qualities)
u capture required properties or qualities of the system
u often means: how well some behavioral or structural

aspect of the system should be accomplished [Malan et al.

1999]
u two categories:

ll Observable at runtimeObservable at runtime, e.g., performance, security,
reliability, availability, usability, etc.

ll Not observable at runtimeNot observable at runtime, e.g., extensibility,
portability, reusability, etc.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 14

SWEEDOther Things that Need to be
Taken into Account

ss Project constraintsProject constraints
u define how the eventual system must fit into the

world and what rules must be followed in its
development.

ll Organizational constraintsOrganizational constraints, e.g., deadlines,
budget, process standards, business rules;

ll Operational constraintsOperational constraints, e.g., mandated
technologies, interfaces to hardware and other
software;

ll Legislative and Ethical constraintsLegislative and Ethical constraints, e.g., safety,
privacy, health regulations/standards.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 15

SWEEDOther Things that Need to be
Taken into Account

ss Project driversProject drivers
u are the driving forces for the system:

l Purpose of the System;
l Client, Customer and other (non-user)

Stakeholders;
l Users of the System.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 16

SWEEDOther Things that Need to be
Taken into Account

ss Project issuesProject issues
u define the ideas, concerns, and issues related to

the project:
l Open issues
l Installation and transition issues
l Risks
l Estimated cost
l Change Cases
l Ideas for solutions and off-the-shelf options

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 17

SWEEDWhere Do All these Things
Come from?

They originate from various sources:
ss PeoplePeople: Identify all the people who have a

stake in the system. Remember that this
includes non-users.

ss SystemsSystems: What systems must the software
interface with?

ss DocumentsDocuments: This includes market research,
standards, domain analysis, business
process models, etc.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 18

SWEED

Requirements Engineering

s Feasibility Studies

s Requirements (Elicitation and) Analysis

s Requirements Specification

s Requirements Validation

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 19

SWEED

Feasibility Studies

s Collect information pertinent to the following
questions:
u Does the system contribute to the overall

objectives of the organization?
u Is it possible to achieve the objectives of the

project?
l Is there a risk with high probability or big impact that

makes the project too risky?
l Can the system be implemented using current

technology and within given cost and schedule
constraints?

u (follow …)

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 20

SWEED

Feasibility Studies

s Collect information pertinent to the following
questions (continued):
u Can the system be integrated with other systems

which are already in place?
u Can you reach agreement on the context of the

work?

s The report should make a recommendation
about whether or not the development should
continue.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 21

SWEEDRequirements Elicitation and
Analysis

s Requirements Elicitation:
u the activity of learning about the problem domain

and extracting the requirements (and the other
ones mentioned)

s Elicitation feeds analysis
s Tasks:

u getting an understanding of the application domain
u finding the right people to talk to (identifying the

stakeholders)
u asking them pertinent questions
u (cont’d)

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 22

SWEEDRequirements Elicitation and
Analysis

s Tasks (cont’d):
u identifying and resolving contradictions between

statements made by different people and
terminology differences,

u identifying and agreeing upon system boundaries,
u keeping the project from going beyond its scope,
u collecting information from other sources, and
u making the gathered information more precise.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 23

SWEEDRequirements Elicitation and
Analysis

s Requirements elicitation is about
communication between people.

s Use Cases are a popular choice as a tool.
s Techniques (not necessarily exclusive):

u interviewing/questionnaires/surveys
u analysis of existing documentation
u workshops
u storyboarding
u role playing
u prototyping

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 24

SWEED

Requirements Specification

s The specification activity formalizes the results
from the elicitation and analysis activity in a
document
u refines and elaborates the results of the analysis

phase
s Two forces at different levels:

u Stakeholders must agree to document (contract +
statement of needs)

u Developers must be able to use the document to
design/implement the system (contract +
documentation of system)

s Degree of formality depends on the approach

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 25

SWEEDExample Table of Contents for
Requirements Document

1. The Purpose of the Document

2. The Purpose of the System

3. Stakeholders of the System

4. Naming Conventions, Definitions, and Assumptions

5. Project Constraints

6. The Scope of the Work and System

7. Functional Requirements

8. Non-functional Requirements

9. Project Issues

Use Cases are
found here

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 26

SWEED

Requirements Validation

s Shows that the requirements actually define the
system which the customer wants.

s Work is performed on complete draft of
requirements specification.

s Different types of checks should be carried out:
u validity checks
u consistency checks
u completeness checks
u correctness checks
u realism and necessity checks
u verifiable checks

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 27

SWEED

Requirements Validation

s Techniques for validation:
u Reviews (inspections, walkthroughs, etc.)
u Prototyping/simulating/testing from specification
u Automated consistency analysis (tools)

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 28

SWEED

Use Cases

s A complete set of use cases specifies all the
different ways to use the system, and thus
defines all behavior required of the system,
bounding the scope of the system. [Malan et
al.’99]

s User goals summarize system functions
(functional requirements) in verifiable terms of
use that users, executives, and developers
can appreciate and validate against their
interests. [Cockburn ’97]

So where do use cases
fit into all that?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 29

SWEED

Use Cases

s Use cases offer a “familiar” representation to
stakeholders
u informal, easy to use, and story-telling-like style

encourages them to be actively involved in defining
the requirements;

u thus, easier to validate with stakeholders;
u allows common understanding between developers,

system end users, and domain experts—“Is this what
you want?”.

s They are scalable:
u Use cases can be decomposed/composed—each

step is ideally a sub-goal.

Why do we use
use cases anyway?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 30

SWEED

Use Cases

s Being a black-box view of the system, use
cases are a good approach for finding the
What rather than the How.
u A black-box matches users view of the system:

things going in and things coming out.

s Use cases force one to look at exceptional as
well as normal behavior.
u helps us to surface hidden requirements

s Use cases can help formulate system tests.
u “Is this use case built into the system?”

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 31

SWEED

Use Cases

s Replace the monotonous requirements list
u use cases define all functional requirements
u easier (and more intrinsically interesting) to extract

user goals than list a bunch of “shall” statements

s Use case templates facilitate interviewing and
reviews

s Ease an iterative development lifecycle
u levels of precision for a use case by refinement

s Support an incremental development lifecycle
u E.g. “Acme” Release 1: use cases 1-20;

“Acme” Release 2: use cases 1-29.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 32

SWEED

Use Case Example
Use Case: Deposit Money
Scope: Bank Accounts and Transactions System
Level: User Goal
Intention in Context: The intention of the Client is to deposit money on

an account. Clients do not interact with the System directly; instead, for
this use case, a Client interacts via a Teller. Many Clients may be
performing transactions and queries at any one time.

Primary Actor: Client
Main Success Scenario:
1. Client requests Teller to deposit money on an account, providing

sum of money.
2. Teller requests System to perform a deposit, providing deposit

transaction details*.
3. System validates the deposit, credits account for the amount,

records details of the transaction, and informs Teller.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 33

SWEED

Use Case Example
Extensions:
2a. Client requests Teller to cancel deposit: use case ends in failure.
3a. System ascertains that it was given incorrect information:

3a.1. System informs Teller; use case continues at step 2.
3b. System ascertains that it was given insufficient information to perform
deposit:

3b.1. System informs Teller; use case continues at step 2.
3c. System is not capable of depositing (e.g. transaction monitor of
System is down)**:

3c.1. System informs Teller; use case ends in failure.
Notes:
* a hyperlink to a document that contains data details and formats.
** this is an example of an IT infrastructure failure, we only write it in a use case if
there is a corresponding project constraint that states a physical separation, e.g.,
transaction section depends on a legacy system which is located somewhere else.

SWEED

Lesson 2

Use Case Basics I

Requirements Engineering
and Use Cases

Use Case Basics

Use Case Tips
& Tricks

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 35

SWEED

Use Case Basics

s Actors
s System Boundary
s Stakeholders and their Interests
s Scenarios
s Use Cases

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 36

SWEED

Actors

s “The actors represent what interacts with the
system.” [Jacobson ‘92]

s An actor represents a role that an external
entity such as a user, a hardware device, or
another system plays in interacting with the
system.

s A role is defined by a set of characteristic
needs, interests, expectations, behaviors and
responsibilities. [Wirfs-Brock ‘94]

What are they?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 37

SWEED

Actors

s An actor communicates by sending and
receiving messages to/from the system under
development.

s A use case is not limited to a single actor.
s Sources:

u Documentation: user manuals and training guides
are often directed at roles representing potential
actors

u People: Workshops, Meetings, etc.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 38

SWEED

What to Look for...

s Look for external entities that interact with the
system
u Which persons interact with the system (directly or

indirectly)? Don’t forget maintenance staff!
u Will the system need to interact with other systems

or existing legacy systems?
u Are there any other hardware or software devices

that interact with the system?
u Are there any reporting interfaces or system

administrative interfaces?

Adapted from: Armour & Miller 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 39

SWEED

Actors Categories

s Jacobson (1992) categorized actors into two
types:

s Primary Actor:
u actor with goal on system
u obtains value from the system

s Secondary Actor:
u actor with which the system has a goal
u supports “creating value” for other actors

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 40

SWEED

After Identifying Actors...

s Primary and Secondary
u What part in the functioning of the business or

organization does the actor’s interaction with the
system have?

s Primary
u What is the measurable value provided to the

actor?
u What behavior must the system provide to satisfy

this value?
s Secondary

u What value is the actor supporting in the use
case?

Adapted from: Armour & Miller 2001

Ask the
following

questions!

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 41

SWEED

Actor Personalities

s An actor can have multiple personalities
within a use case and across use cases
uu InitiatorInitiator: initiates the use case

l e.g. Client in “Deposit Money” use case?

Adapted from: Armour & Miller 2001

Client Teller

BAT
System

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 42

SWEED

Actor Personalities
uu ServerServer: provides a service to the system in a use case.

l e.g. “BAT System” in “Identify Client” use case for ATM system

uu ReceiverReceiver: receives a notification from the system in a
use case.

l e.g. Teller and “Statistical Information Collector” (SIC) in the
“Deposit Money” use case

Client BAT

ATM
System

Teller SIC

BAT
System

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 43

SWEED

Actor Personalities
uu FacilitatorFacilitator: supports another actor’s interaction with

the system (or the inverse) in a use case.
l e.g. Teller in the “Deposit Money” use case and inversely

“Printer” in “Send Out Monthly Statements”

Teller Printer

BAT
System

Client

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 44

SWEEDWhen Identifying
Actor Personalities...

s Initiator
u What is the initiation protocol with the system?

s Server
u What service does the actor provide? How is it

related to the value the use case provides to
another actor?

s Receiver
u What information does this actor receive? Why

does this actor need the information?

Adapted from: Armour & Miller 2001

Ask the
following

questions!

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 45

SWEEDWhen Identifying
Actor Personalities...

s Facilitator
u What services does the facilitator perform?
u What restrictions does the facilitator place on the

primary actor’s interactions with the system?
u Does a special interface have to be built to

accommodate this actor?

s Initiator, Server, Receiver, Facilitator
u What are the interface requirements for the actor-

system interaction (including data format)?
u If the actor is a system, is its behavior sufficient? If

not, does the system or actor need to be modified?

Adapted from: Armour & Miller 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 46

SWEED

System Boundary

s The system boundary defines the separation
between the system and its environment.

s Important to clearly define the system
boundary.
u Movement of the system boundary often has a

large effect on what should be built.
u A common area of conflict between stakeholders

arises when they refer to different systems.

s Example: see next page.

What is it?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 47

SWEED

System A
System B

System C

Factory

System D

System Boundary

ComponentA

Delivery

Customer

Order
Taker

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 48

SWEEDStakeholders and their
Concerns

s A stakeholder is an individual, group or
organization that has a vested interest in the
system under development.

s The system enforces a contractual
agreement between stakeholders, one of
whom is the primary actor.
u The use case describes how the system protects

all of the stakeholders’ interests under different
circumstances, with the primary actor driving the
scenario.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 49

SWEED

Scenarios

s A scenario is an ordered set of interactions
between a system and a set of actors
external to the system. It is comprised of a
concrete “sequence” of interaction steps,
where all specifics are given names.

s A scenario is a particular performance of a
use case (instance), and represents a single
path through the use case.

What are they? How do they relate
to use cases?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 50

SWEED

Scenarios

s Scenarios are a useful tool.
u provide a paper prototype
u maybe easier to start with (concrete) scenarios

and then generalize (for users also)
u are used for testing

s Scenarios are commonly depicted using UML
sequence diagrams.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 51

SWEEDScenario using a UML
Sequence Diagram

bcv: Bank
john:Client harry:Teller cheseaux_1:ATM

cash (…)

withdraw (…)
withdrawMoney (…)

success (…)

receipt (…)

accountNumber (A27-8)

deposit (A27-8, USD, 2000)

openAccount(john)

depositMoney (A27-8, USD, 2000)

openAccount(john)

receipt (…)

accountDetails (A27-8)

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 52

SWEED

Use Case

s Use cases capture who (actor) does what
(interaction) with the system, with what
purpose (goal), without dealing with system
internals. [Malan et al.’99]

s A use case:
u achieves a single, discrete, complete, meaningful,

and well-defined task of interest to an actor
u is a pattern of behavior between some actors and

the system—a collection of potential scenarios
u is written in domain vocabulary
u defines purpose and intent (not concrete actions)
u is generalized and technology-free

What is it?

Source: Constantine et al. ‘99

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 53

SWEED

Use Case

s Cockburn (2001) highlights that effective use
cases are goal-based:
u A use case is a description of the possible

sequences of interaction between the system
under discussion and external actors, related to
the goal of one particular actor.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 54

SWEED

Use Case

Jacobson (1992):
u A use case is a sequence of transactions

performed by a system, which yields an
observable result of value for a particular actor.

u A transaction consists of a set of actions
performed by a system. A transaction is invoked
by a stimulus from an actor to the system, or by a
timed trigger within the system.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 55

SWEED

Use Case

s A transaction consists of 4 steps :
u 1. The primary actor sends the request and the

data to the system;
u 2. The system validates the request and the data;
u 3. The system alters its internal state;
u 4. The system replies to the actor with the result.

Source: Cockburn 2001

1.

4.
3.

2.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 56

SWEED

Use Case Description

s Use cases are primarily textual descriptions.
u More than just an ellipse drawn in a UML diagram!

s Use case steps are written in an easy-to-
understand structured narrative using the
vocabulary of the application domain.

s Use cases are clear, precise, generalized,
and technology-free descriptions.

s A use case sums up a set of scenarios:
u Each scenario goes from trigger to completion.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 57

SWEED

Use Case Description

s It includes
u How the use case starts and ends
u The context of the use case
u The actors and system behavior described as

intentions and responsibilities
u All the circumstances in which the primary actor’s

goal is reached and not reached
u What information is exchanged

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 58

SWEED

Granularity of Use Cases

s Cockburn (2001) identified three different
goal levels:
u summarysummary level is the 50,000 feet perspective,
u useruser--goalgoal level is the sea-level perspective,
u subfunctionsubfunction is the underwater perspective.

Source: Cockburn 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 59

SWEED

Granularity of Use Cases

s Summary level use cases:
u are large grain use cases that encompass multiple

lower-level use cases; they provide the context
(lifecycle) for those lower-level use cases.

u they can act as a table of contents for user goal
level use cases.

Source: Cockburn 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 60

SWEEDExample: Summary Goal
Level Use Case
Use Case: Manage Funds By Bank Account
Scope: Bank Accounts and Transactions System
Level: Summary
Intention in Context: The intention of the Client is to manage his/her
funds by way of a bank account. Clients do not interact with the System
directly; instead all interactions go through either: a Teller, a Web
Client, or an ATM, which one depends also on the service.
Primary Actor: Client
Main Success Scenario:
1. Client opens an account.
Step 2 can be repeated according to the intent of the Client
2. Client performs task on account.
3. Client closes his/her account.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 61

SWEED

Granularity of Use Cases

s User-goal level use cases:
u describe the goal that a primary actor or user has

in trying to get work done or in using the system.
u are usually done by one person, in one place, at

one time; the (primary) actor can normally go
away happy as soon as this goal is completed.

Source: Cockburn 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 62

SWEEDExample: User Goal Level Use
Case
Use Case: Deposit Money
Scope: Bank Accounts and Transactions System
Level: User Goal
Intention in Context: The intention of the Client is to deposit money on

an account. Clients do not interact with the System directly; instead, for
this use case, a client interacts via a Teller. Many Clients may be
performing transactions and queries at any one time.

Primary Actor: Client
Main Success Scenario:
1. Client requests Teller to deposit money on an account, providing

sum of money.
2. Teller requests System to perform a deposit, providing deposit

transaction details*.
3. System validates the deposit, credits account for the amount,

records details of the transaction, and informs Teller.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 63

SWEEDExample: User Goal Level Use
Case
Extensions:
2a. Client requests Teller to cancel deposit: use case ends in failure.
3a. System ascertains that it was given incorrect information:

3a.1. System informs Teller; use case continues at step 2.
3b. System ascertains that it was given insufficient information to perform
deposit:

3b.1. System informs Teller; use case continues at step 2.
3c. System is not capable of depositing (e.g. transaction monitor of
System is down)**:

3c.1. System informs Teller; use case ends in failure.
Notes:
* a hyperlink to a document that contains data details and formats.
** this is an example of an IT infrastructure failure, we only write it in a use case if
there is a corresponding project constraint that states a physical separation, e.g.,
transaction section depends on a legacy system which is located somewhere else.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 64

SWEED

Granularity of Use Cases

s Subfunction level use cases
u provide “execution support” for user-goal level use

cases; they are low-level and need to be justified,
either for reasons of reuse or necessary detail.

Source: Cockburn 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 65

SWEEDExample: Sub-Function Goal
Level Use Case
Use Case: Identify Client
Scope: Automatic Teller Machine (ATM for short)
Level: Sub-Function
Intention in Context: The intention of the Client is to identify him/herself to the
System. A project (operational) constraint states that identification is made with a
card and a personal identification number (PIN).

Primary Actor: Client
Main Success Scenario:
1. Client provides Card Reader with card; Card Reader informs System of card
details*.

2. System validates card type.

3. Client provides PIN to System.

4. System requests BAT System to verify identification information*.

5. BAT System informs System that identification information is valid, and System
informs Client.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 66

SWEEDExample: Sub-Function Goal
Level Use Case
Extensions:
(1-6)a. (at any time) Client cancels the identification process.

(1-6)a.1. System requests Card Reader to eject card; use case ends in failure.

2a. System ascertains that card type is unknown:
2a.1. The System informs the Client and requests the Card Reader to eject the

card; the use case ends in failure.

2b. System informs Client that it is currently "out of service": use case ends in
failure.

3a. System times out on waiting for Client to provide PIN:
3a.1. System requests Card Reader to eject card; use case ends in failure.

5a. BAT System informs System that password is incorrect:
5a.1a. System informs Client and prompts him/her to retry; use case continues

at step 3.
5a.1b. System ascertains that Client entered an incorrect PIN for the third time:

5a.1b.1. System swallows card and informs Client to see Bank for further
details; use case ends in failure.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 67

SWEEDExample: Sub-Function Goal
Level Use Case
5b. BAT System informs System that card information is invalid:

5b.1. System informs Client and requests Card Reader to eject card; use
case ends in failure.

5c. System is unable to communicate with BAT System:
5c.1. System informs Client that it is now out of service and requests Card

Reader to eject card; use case ends in failure**.

Notes:
* Data details and formats are recorded in another document (I would
normally provide a hyperlink to this information; do not clutter the use case
with this information)

** this is an open issue on what the System is to do when confronted with this
situation, e.g., does it go "out of service" and poll BAT System? or
does it just go "out of service" until Maintenance comes to put it back online?

SWEED

Lesson 3

Use Case Basics II

Requirements Engineering
and Use Cases

Use Case Basics

Use Case Tips
& Tricks

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 69

SWEED

What versus How

s The “How” at one level of abstraction forms
the “Why” for the next level down

Goal

Subgoal

SubsubsubGoal

Subgoal

SubsubGoal ...

...

...

Why

Why

Why

How

How

How

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 70

SWEED

Scope of Use Cases

ss The The enterpriseenterprise as the system boundary for use as the system boundary for use
casescases (also known as business use cases).
u provides the context in which the system under

development is involved
u shows how the system under development will add

value to the outside world
s Transparency of system internals:

u Black-box: if you want to treat the whole enterprise
as a black-box; interaction is strictly between system
and external actors.

u White-box: if you talk about the staff, the sections (or
departments), and systems within the organization.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 71

SWEED

Scope of Use Cases

ss The The software systemsoftware system as boundary for use as boundary for use
casescases (also known as system use cases).

s Choice in transparency of system internals for
use cases:
u Black-box: if you want to treat the software system

as a black-box; interaction is strictly between
system and actors.

u White-box: if you reveal the components of the
system, which may consist of other systems and
subsystems.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 72

SWEED

Scope of Use Cases

ss A A component of the software systemcomponent of the software system to to
develop as boundary for use casesdevelop as boundary for use cases

s Always a black-box description

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 73

SWEED

Abstraction Levels of Actors

s Business Actors
u the business entity that interacts with the business

s System Actors
u has direct interaction with the system

Adapted from: Armour & Miller 2001

Client Teller

BAT
System

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 74

SWEED

Abstraction Levels of Actors

1. The Teller requests the system to perform a
deposit, providing the deposit transaction details.

2. The System validates the deposit, credits the
account for the amount, records the details of the
transaction, and informs the Teller.

BAT
System

Teller

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 75

SWEED

Abstraction Levels of Actors

1. The Client requests System to deposit money on an
account, providing a certain amount of money.

2. The System validates the deposit, credits the account
for the amount, records the details of the transaction,
and informs the Client of a successful deposit.

Client

Bank System

Teller

BAT
System

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 76

SWEED

Abstraction Levels of Actors

1. The Client requests the Teller to deposit money on
an account, providing a certain amount of money.

2. The Teller requests System to deposit, providing the
deposit transaction details.

3. The System validates the deposit, credits the account
for the amount, records the details of the transaction,
and informs the Teller.

TellerClient

BAT
System

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 77

SWEED

Differentiating the Two Levels

s Does the entity primarily just relay
information? Or is significant value added?

s Does the definition of the actor provide critical
context for the use case?

s Is it likely that the actor will be replaced by an
automated interface?

s Is the event, from the actor’s perspective,
focused just on the system, or does it
encompass multiple systems?

Adapted from: Armour & Miller 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 78

SWEED

Use Case Template

s Our preference: A slightly adapted version of
Cockburn’s “fully dressed” use case template:
u One column (no table)
u Sequenced: Numbered steps (Dewey decimal

numbering system) and extensions to main
scenario use alphabetic letters to differentiate from
main steps

u The clauses Stakeholders’ interests through to
Trigger, and Extensions and Notes are optional

One of many!

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 79

SWEED

Use Case Template

Use Case: Name of the use case. This is the goal stated by a
short active verb phrase.

Scope: The scope of the “system” being considered (black-/white-
box and enterprise/system/component).

Level: Summary, User-goal, or Subfunction

Intention in Context: A statement of the primary actors
intention and the context within which it is performed.

Primary Actor: The primary actor of the use case.

Stakeholders’ Interests: The list of stakeholders and their key
interests in the use case.

Precondition: What we can assume about the current state of
the system and environment.

One of many!

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 80

SWEED

Use Case Template

Minimum Guarantees: How the interests of the stakeholders are
protected in all circumstances.

Success Guarantees: The state of the system and environment if
the goal of the primary actor succeeds.

Trigger: What event starts the use case.

Main Success Scenario:
<step_number> "." <action_description>
The numbered steps of the scenario, from trigger to goal delivery,

followed by any clean-up.
Conditions and alternatives are shown in the extension part.

Extensions:
<step_altered> <condition> ":" <action_description> or <sub-use_case>

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 81

SWEED

Use Case Template

(Extensions cont’d)
Steps can be nested. Dewey numbers are then used, e.g. 3a.1
An extension always refers to a step of the Main Success Scenario.
An extension step takes place in addition to the respective main
step,

notation: 2 ||,
or as an alternative,

notation: 2a.
An extension might correspond to regular behavior, exceptional
behavior that is recoverable, or unrecoverable erroneous behavior.

Notes:
Provide additional noteworthy information.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 82

SWEED

Use Case Template

s The list of clauses is not strict; other clauses
could be added:
u Frequency Of Occurrence
u Technology and Data Variations
u UI Links
u Calling Use Cases
u Open Issues
u Version (Number, Date, Author, Reviewers)
u Secondary Actors

s General Rule: Keep your template as slim as
possible.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 83

SWEEDExample of Fully Dressed Use
Case
Use Case: Buy items online
Scope: Web Ordering System
Level: User Goal
Intention in Context: The intention of the Shopper is to shop for goods on

Acme’s online shopping site.
Primary Actor: Shopper
Stakeholders’ Interests:

Shopper: Get desired items for a good price.
Acme: Sell as many items as possible (fixed price).

Minimum Guarantees:The System has a log of all the item selections and
queries made by the Shopper*.
The ordered items will only be delivered once payment has been
transferred to Acme’s account.

Success Guarantees: System has received payment confirmation and the
System has notified the Warehouse for delivery of the ordered items to
the Shopper.

Adapted from: Cockburn 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 84

SWEEDExample of Fully Dressed Use
Case

Precondition: Shopper has identified him/herself to the System.

Trigger: Shopper requests information on a particular product.

Main Success Scenario:
The Shopper repeats steps 1-4, as many times as desired, to navigate to and select

different items, adding them to the shopping cart as desired.

1. Shopper requests System for information on product.

2. System provides Shopper with requested information on product.

3. Shopper requests System to add it to his/her shopping cart.

4. System adds it to shopping cart and presents a view of shopping cart
and items in it*.

5. Shopper requests System to check-out his/her shopping cart.

6. System debits Shopper’s credit card with purchase price, and passes
order on to Warehouse for delivery to Shopper.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 85

SWEEDExample of Fully Dressed Use
Case
Extensions:
(1-4)||a. Shopper requests System to change contents of shopping cart:

(1-4)||a.1. System permits Shopper to change quantities, remove items, or
go back to an earlier point in selection process; use case continues from
where it was interrupted.

(1-5)a. System detects that Shopper has left: use case ends in failure.
4||a. System detects that item is not in stock:

4||a.1. System requests Warehouse to replenish the stocks for the item and
informs User that item is on back-order; use case continues from where it
was interrupted.

6a. System fails to debit Shopper’s credit card:
6a.1. System informs Shopper; use case ends in failure.

Notes:
* Details on what information is required/offered is given in data details and

formats documents (preferably hyperlinked)

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 86

SWEEDUse Cases as a Goal-based
Approach
s Focus on why system is being constructed

u high level objectives of business or organization
right through to fine-grained goals of users

u take into account stakeholder interests
u explicit declaration of goals and interests provides

basis for conflict resolution

s Primary actors interact to achieve their goals,
the system supports these goals and possibly
provides alternatives (as backups)

s But must keep boundary & constraints in mind:
u project constraints: e.g. business rules, mandated

COTS, existing interfaces

SWEED

Lesson 4

Use Case Tips and Tricks

Use Case Basics

Use Case Tips
& Tricks

Use Cases
and UML

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 88

SWEED

Use Case Tips and Tricks
s General & Style Tips
s Process Suggestions
s FAQs

u When to Stop Decomposing
u How Many is Enough
u How Formal Do the Use Cases Have to Be
u How Large is a Use Case
u When are Use Cases Not Suitable
u Avoiding Functional Decomposition Design

s CRUD Use Cases
s Commonly Forgotten Functionality

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 89

SWEED

General Tips

s Make sure the context is clear!
s Make sure the use case is clear to each and

every stakeholder
s Iteration is the key to effective use cases:

precision, consistency, and readability
s Make a clear distinction between business and

system use cases
u Remember two-level contract

s Describe use cases from primary actor’s point of
view

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 90

SWEED

General Tips
s Make a clear separation between actor’s

intentions and responsibilities, and those of
the system, thus highlighting the system
boundary.

s Hyperlinks are very useful for relating use
cases to other documents (business rules,
data details and formats, etc.)
u Tool Issue (the dream): browse use cases via the

web; use cases, business rules, etc. stored in
database (or at least version control); integrated
with UML tool.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 91

SWEED

Style Tips
s Name use cases appropriately

u name => primary actor’s intention/goal
u (when possible) do not include name of actor in

use case name, but state it from actor’s point of
view; but there are exceptions: Identify User
versus Identify Myself, e.g.

u name use cases as “verb + noun phrase” (active
verb in imperative mood, when possible)

s There may be more than a single success
scenario
u choose most probable and branch off others into

the extension clause

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 92

SWEED

Style Tips — Steps
s Use Simple Grammar (active voice)

u GOOD “1. Actor requests System for rum-flavored
popcorn.”

u BAD “1. The System was requested by the Actor for
some of the rum-flavored variety of popcorn.”

s State who does what to whom, i.e., the
participants in the interaction should always be
clear.

s State primary actor’s intent.
s Start each step “System …” or “Actor …”.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 93

SWEED

Style Tips — Steps
s Join parts of Jacobson’s transaction whenever

possible/reasonable.
u e.g., “2. System calculates sum and prompts User

for payment details.”

s Use solution-free narrative (language of the
application domain), unless a particular
solution is required.

s Avoid "if" statements. Factor out into
extensions instead.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 94

SWEEDStyle Tips — Extensions
Clause

s Failure scenarios can be recoverable or non-
recoverable.
u defined in terms of a variation point to the main

scenario (extensions clause)

s Recoverable alternatives rejoin main
scenario.
u e.g. “use case continues at step X”, or “use case continues

from where it was interrupted”

u or join at end, e.g., “use case ends in success”

s Non-recoverable alternatives end use case in
failure.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 95

SWEEDStyle Tips — Extensions
Clause

s Look for ways that each step in the main
scenario can fail.
u a single step may have several alternatives

s Do not get into a white-box view just because
you are dealing with failures.
u address “business” failures, rather than IT failures

u but: if boundaries between systems have been
defined, then identify system-level exceptions

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 96

SWEEDStyle Tips — Extensions
Clause

s Remove all scenarios that are impossible
according to preconditions,

s Remove all scenarios that cannot be detected
or acted upon by the system (only for system-
level use case).

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 97

SWEED

Process. Actors
Task 1: Actors
s Brainstorm actors and primary actor goals

u Taking into account the questions for identifying
Primary and Secondary actors, and Initiators,
Servers, Receivers, and Facilitators.

u Make a list with each primary actor and its goals.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 98

SWEED

Process. Actors
s Work product 1: Actor Description

Actor Role Brief Description
Client Primary A customer of the bank that will use the

system to perform transactions and queries
on his/her accounts.

Bank
Manager

Primary …

Printer Secondary
ATM Facilitator
Teller Facilitator

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 99

SWEED

Process. Actors

s Work product 2: Actor with Goal List

Actor Goal
open a savings account
open a high transaction account
deposit money on to an account

transfer money from one account to another
withdraw money from an account
close an account

Client

get an overdraft
Bank
Manager

…

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 100

SWEED

Process. Stakeholders

Task 1 || (background): Stakeholders
s Brainstorm stakeholders and their interests.

u identify stakeholders and their key interests in the
system with respect to the use case

s Questions:
u Who has a vested interest in the System?

l Look out for individuals, groups of people,
organizations, etc.

u Are there any regulations/policies to deal with?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 101

SWEED

Process. Stakeholders

s Work product 3: Stakeholder with Concern List

Stakeholder Concern
keep money secure
have high interest
pay low bank charges

Client

have high access possibilities
make the largest possible profit:
- low interest
- high charges

Bank

ensure good reputation with customers:
- secure
- good service
- …
not allow money laundering Government
…

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 102

SWEED

Process. UC Outlines
Task 2: Use Case Outlines
s Construct (summary and/or user-goal) use cases

briefs for each actor goal on the system, making
the actor the primary one.

s Always ask “why” in order to find the next
level up!

s Questions:
u What measurable value/service is needed by the

actor?
u What are the actors intentions?
u Why do the actors do what they do?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 103

SWEED
Process. UC Outlines
Work Product 4: Prioritized Use Case List

Actor Goal Goal
Description

Business
Need

Difficulty Priority UC
#

open a savings
account

open a new
savings
account with
the bank

Medium Simple 3 1

open a high
transaction
account

Top Simple 1 2

deposit money
on to an account

High Medium 2 3

transfer money
from an account
to another

High Difficult 4 4

withdraw money
from account

High Medium 2 5

Client

close an
account

Top Simple 1 6

Bank
Manager

…

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 104

SWEED

Process. UC Bodies
Task 3: Use Case Bodies
s Capture each actor’s intent and responsibility—

from trigger to goal delivery.
s For each use case, fill in the main success

scenario before the extensions.
u The extensions take the most time; brainstorming

activities with group members are a good way to find
alternatives—successful and erroneous ones
(recoverable or non-recoverable).

u Identify all failure conditions before failure scenarios.
u Ask “what can go wrong?”
u Iteration/refactoring is the key: use cases are always

better next time around.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 105

SWEED

Process. UC Structuring
Task 4: Use Case Structuring
s For each use case:

u if the main success scenario of the use case is
greater than 9 steps, collect steps that
encapsulate a sub-goal of the primary actor and
create a new lower-level use case with the steps.

u Inversely, if the use case is smaller than 3 steps,
think about expanding it or putting it back in the
calling use case.

s The most important thing is that the steps of
the use case have a consistent level of
description, no matter what the level!

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 106

SWEED
Process. Checks

Task 5: Checks
s Apply the checklist to each use case (shown next

slide); see also [Armour et al. 2001, Appendix A]
s Review each use case:

u Is its purpose and intent clear?
u Is its context clear?
u Is it written in a clear and precise way?
u Is it written using the vocabulary of the application

domain and abstract away from technology?
u Is it complete, correct, consistent, verifiable?
u Does it achieve a single, discrete, complete, meaningful,

and well-defined task of interest to an actor?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 107

SWEED

Check-list

Field
Use case title.

Scope.

Level.

Intention in
Context

Primary actor.

Question

1 Is the name an active-verb goal phrase, that expresses the
goal of the primary actor?

2 Can the enterprise/system/component deliver that goal?

3 Is the system boundary clear, i.e., do the developers have
to develop everything in the Scope, and nothing outside it?

4 Does the use case content match the goal level stated in
Level?

5 Is the goal really at the level mentioned?

6 Has it been clearly stated what other use cases may be
executing at the same time?

7 Does the named primary actor have behavior?
8 Does the primary actor have a goal against the system

under development that is a service promise of the system?

Adapted from Cockburn 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 108

SWEED

Check-list

Field
Preconditions
Minimum
Guarantees
Success
Guarantees
Main success
scenario

Each step in
any scenario

Question

9 Are they assumptions and not guards?

10 Are all the stakeholders' interests protected?

11 Are all stakeholders' interests satisfied?

12 Does it have less than 10 steps?

13 Does it run from trigger to delivery of the success
guarantee?

14 Is it phrased as a goal that succeeds?
15 Does the process move distinctly forward after successful

completion of the step?
16 Is it clear which actor is operating the goal?
17 Is the intent of the actor clear?

Adapted from Cockburn 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 109

SWEED

Check-list

Field
Each step in
any scenario

Extension
condition.

Overall use
case content.

Question
18 Is the goal level of the step lower than the goal level of

the overall use case? Is it, preferably, just a bit below the
use case goal level?

19 Are you sure the step does not describe the user
interface design of the system?

20 Is it clear what information is being passed?
21 Does the step "validate", as opposed to "check“, a

condition?

22 Can and must the system detect and handle it?

23 To the sponsors and users: “Is this what you want?”
24 To the sponsors and users: “Will you be able to tell, upon

delivery, whether you got this?”
25 To the developers: “Can you implement this?”

Adapted from Cockburn 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 110

SWEED

FAQs
s When to Stop Decomposing?

u User goals are the aim of the game, only go lower
if you can justify it (necessary detail and reuse of
commonality)

s How Formal Do the Use Cases Have to Be?
u Depends on project (type & size) and stage in

development (goes from informal to formal)
u Formalize when:

l project members work separately but
communicate through models

l more than 20 use cases

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 111

SWEED

FAQs
s How Many is Enough?

u Cockburn: How many user goals does the system
have?

u Anderson and Fertig: no more than 80 for any
subsystem

s When are Use Cases Not Suitable?
u Use cases without an end user ? (e.g., clock-triggered)
u Systems with few actors and long running processes

l Systems which are “all” algorithm, e.g., scientific
computation

l Continuous process/control systems, e.g., stream
treatment

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 112

SWEED

FAQs
s How Large is a Use Case?

u Under 10 steps
u scope: business, system, component
u level: summary, user-goal, sub-function

s Do my use cases have a sufficient level of detail?
u Ask the following questions:

l Could system or acceptance test scripts be
generated easily from the use cases?

l Do you have sufficient information to move onto the
next development activity (at least for the high-
priority use cases)?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 113

SWEED

FAQs
s What does Functional Decomposition Design

have to do with use cases and how does one
avoid it?
u Decomposing use cases is a kind of functional

decomposition
u Don’t fall into the trap of a naïve mapping between

use cases and system structure
l The temptation is to base the design on use cases; the

results are usually enormous control objects, no reuse of
functionality and duplication of objects.

u Remember design is not supposed to be easy
l decisions and trade-offs must be made

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 114

SWEEDCreate Read Update Delete
(CRUD) Use Cases
s Create, Read, Update and Delete are performed on a

common (business) object, but each one
corresponds to a separate goal.

s Cockburn suggests starting with a higher-level use
case (often summary), Manage <business object>
u Easier to track
u Break out any complex CRUD units into a new

use case
s But in the hunt, don’t put CRUD use cases first,

instead keep focused on use cases that provide the
most value to the primary actors.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 115

SWEEDCommonly Forgotten
Functionality
s Security

u Authentication and authorization of users

s Audit
u Logs of online or batch activity

s Backup and Recovery
u Creating and maintaining copies of system data

s Remote Users
u Interactions of customers or supply chain partners

s Reporting requirements
u queries and reports

Source: Kulak et al. 2000

SWEED

Lesson 5

Use Cases in UML

Use Case Tips
& Tricks

Use Cases
and UML

Advanced Issues in
Writing Use Cases

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 117

SWEED

Use Cases in UML

s UML provides a graphical representation for
use cases called the use case diagram.

s It allows one to graphically depict:
u actors,
u use cases,
u associations,
u dependencies,
u generalizations,
u packages,
u and the system boundary.

ActorX ActorY<<include>>

Use Case B

Use Case A

System J

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 118

SWEED

Use Case Model

s A Use Case Model consists of:
u a use case diagram and
u use case descriptions

Use Case A

Use Case: …

…

...

Use Case: …

…

...

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 119

SWEED

Use Case Diagram

s A Use Case Diagram is used in UML to give
an overview of the use cases in focus, from
which allocation of work can be partitioned,
for example.

s Association:
u Unbroken line between actor and use case

s Dependency:
u Broken directed line between two use cases

s Generalization:
u As usual, an unbroken directed line with closed

arrow either between use cases or between actors

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 120

SWEEDRelationships between Use
Cases

s Three relationships that can be used to
structure use cases: extends, includes, and
generalization/specialization.
u help to avoid duplication of work and the related

inconsistencies
u try to direct one towards a more object-oriented

view of the world rather than towards functional
decomposition

u For a good discussion of these relationships, see
[Armour et al. ‘01]

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 121

SWEED

Includes Relationship

s An include relationship means that the base
use case explicitly incorporates the behavior
of another use case at a location specified in
the base.

Identify User

Buy Goods

<<include>>

Use Case: buy goods

…

…

1. The User identifies him/herself
with the System

2. …

...

Use Case: buy goods

…

…

1. The User identifies him/herself
with the System

2. …

...
Preferably a

hyperlink

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 122

SWEED

Generalization Relationship

s “A generalization relationship is between a
general thing and a more specific kind of that
thing” [Booch ‘99]
u it means the child may add to or override

the behavior of its parent

ATM

Mediator

Web ClientTeller

Identify Client
by Retinal Scan

Identify Client

Use Case: identify client by retinal
scan is a identify client

…

Use Case: identify client by retinal
scan is a identify client

…

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 123

SWEED

Extend Relationship

s An extend relationship means that the base
use case implicitlyimplicitly incorporates the behavior
of another use case at a specified location.

Buy Newspaper

Going To Work

<<extend>>
stop-off purchase

Use Case: going to work
…
Main Success Scenario:
…
4. Worker leaves train station
...
Extensions:
...

4||a. The Worker makes a purchase
[extension point: stop-off purchase]
…

Use Case: going to work
…
Main Success Scenario:
…
4. Worker leaves train station
...
Extensions:
...

4||a. The Worker makes a purchase
[extension point: stop-off purchase]
…

Extension point:
stop-off purchase

Buy Groceries

<<extend>>
stop-off purchase

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 124

SWEEDUML Use Case Diagram for
BAT System

BAT System

Manage Funds of a
Bank Account

Open Account

Identify Client

Withdraw Money
Deposit Money

Get Balance

Transfer Money

Close Account

<<include>>

<<include>><<include>>

Mediator

Client

Printer

<<include>>

<<include>>

<<extend>>
query

Perform
Transaction

<<abstract>>

Perform Task
On Account

Extension point:
query

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 125

SWEEDUML Use Case Diagram for
BAT System

ATM

Non-ATM
Mediator

Non-Web
Mediator

Non-Teller
Mediator

Mediator

Web ClientTeller

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 126

SWEEDScheduling and Organizing
Use Cases
s Scheduling use cases:

u Use cases can be prioritized and given release numbers
(can use different colors on UML diagram).

s Organizing use cases:
u Large use case models may result in a mass of information

that can be difficult to follow, and it might be hard to pinpoint
the right information quickly.

u Use cases can be organized into logical groupings.
u Structuring is useful for both a bottom-up and a top-down

approach

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 127

SWEED

Packaging Use Cases in UML

s Packages in UML can be used for partitioning
use cases into logical groupings.

s A package name should reflect the properties
common to its contents.

Account
Management

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 128

SWEED

Packaging Use Cases in UML

s Clustering techniques:
u By (Primary) Actor

l as long as the ratio primary actor - use case is
fair (not more than 80 - 100 use cases)

u By Summary Level Use Case
l use cases naturally cluster by their lifecycle

u By Development Team and Release
l clustering use cases by development team and

release number simplifies work tracing

Source: Cockburn 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 129

SWEED

Packaging Use Cases in UML

s Clustering techniques (continued):
u By Subject Area

l subject areas are usually intuitive

Source: Cockburn 2001

+ Manage Funds By Bank Account
+ Open Account
+ Perform Task On Account
+ Close Account
+ Identify Client

Account
Management

+ Perform Transaction
+ Withdraw Money
+ Deposit Money
+ Transfer Money

Account
Transactions

+ Get Balance

Account
Queries

SWEED

Lesson 6

Advanced Issues in Writing Use Cases
I

Use Cases
and UML

Advanced Issues in
Writing Use Cases

Relating Use Cases with
BPM & with NFRs

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 131

SWEEDAdvanced Issues in Writing
Use Cases

s Use Case Reuse and Parameterization
s Change Cases
s Relating Use Cases to Other Development

Activities
s Relation of Preconditions and Use Case

Failures
s Limitations of Use Cases
s Formalizing Use Cases

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 132

SWEEDUse Case Reuse and
Parameterization
s Use Cases can be reused between projects

(as well as within)
u level of reuse is strongly related to the abstraction

level and application domain

s Parameterized Use Cases
u use cases that occur often in different situations

that just refer to a different thing
u E.g. UC: Find a something [Cockburn ‘01]

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 133

SWEED

Change Cases
s [Ecklund ‘96] proposed Change Cases, i.e. Use

Cases with a special purpose.
s The idea is that some system changes can be

anticipated.
u Change cases allow one to anticipate future requirements

and build a better software architecture

s For each use case and business rule, there
should be a note explaining potential changes
and their reasons:
u maybe even use cases beyond the scope of the current

release in development

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 134

SWEEDRelating Use cases to Other
Development Activities

s How do Use Cases relate to Object-
Orientation
u Use Cases may be part of UML but that does not

make them object-oriented!
3Generalization/Specialization
7Non-seamless transition to “design” objects
l A use case model does not force one to build

an O-O system

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 135

SWEEDRelating Use cases to Other
Development Activities

s Relating Use Cases to O-O Analysis
u Use cases name the concepts needed in domain

modeling and vice versa (validate each other)
l Domain analysis is very important for

establishing common vocabulary; also helps in
finding the right level of detail in use cases. The
result ranges from a data dictionary to a full-
fledged domain class model.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 136

SWEEDRelating Use cases to Other
Development Activities

s Relating Use Cases to O-O Analysis (cont’d)
u The approach of the Software Engineering Lab at

EPFL:
Fondue SpecificationFondue Specification Work Products:

l System Context Model
l Analysis Class Model
l System Operation Model
l System Interface Protocol

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 137

SWEEDRelating Use cases to Other
Development Activities
s How do Use Cases relate to O-O Design

u Use Cases express the to-come solution as it is
perceived. This perception is not a full-fledged
design, except for very simple systems.

u Distribution/allocation of behavior to objects needs
to be addressed, because “effective” use cases say
nothing about how behavior is allocated among
objects.

u Possibilities for relating behavior to objects:
l Entity, Interface, Control Objects [Jacobson ‘92]
l CRC cards bounded by use cases [Bellin ‘97]
l UML collaboration diagrams or sequence diagrams

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 138

SWEEDRelating Use cases to Other
Development Activities
s How do Use Cases relate to O-O Design

u Some issues to be addressed:
l Don’t assume that the extend/generalize relationships

shown in the use cases will translate into inheritance
relationships in the design class diagram.

l Don’t assume included use cases will translate to specific
classes that should be extracted and assigned the
corresponding responsibilities.

l Care must be taken that use cases are not too abstract
(developers need to know all the requirements), or

l the inverse, too concrete, leaving no room for design
freedom.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 139

SWEEDRelating Use cases to Other
Development Activities

s How do Use Cases relate to Testing
u Use Cases are a good source for black-box test

cases.
u There should be a test case for all important

scenarios.
u Extension conditions lead to test cases that need

to be created to ensure that the named condition
is correctly handled by the system.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 140

SWEED

Testing with Use Cases

s For each Test Case we need to define 4 parts:
u Initial System State:

l system state (or part of it) before start of use case in order
to deliver expected results and resulting final system state,

l values that are derived from preconditions for use case and
by inference from inputs and final system state,

u Inputs from the actors:
l data provided by all of the actors that should cause desired

result for test case,
l values that are derived directly from use case steps,

u (cont’d)

Source: McBreen

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 141

SWEED

Testing with Use Cases

u Final System State:
l system state after the use case has completed,

u Expected outputs:
l the data that will have been output as use case ran

through the test case.

Source: McBreen

SWEED

Lesson 7

Advanced Issues in Writing Use Cases
II

Use Cases
and UML

Advanced Issues in
Writing Use Cases

Relating Use Cases with
BPM & with NFRs

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 143

SWEEDRelation of Preconditions and
Use Case Failures
s A precondition is an assumption which must

be true before a use case is “executed”.
s Preconditions are not checked within a use

case. Therefore, the violation of a
precondition need not be considered in the
extensions clause, e.g.
Precondition: All chickens have permission to cross road.
Main Success Scenario: ...
2. User requests System to move chicken across road
3. System moves chicken across road. ...
Extensions:
… 3a. System ascertains that chicken does not have

permission to cross road … -- INCORRECT!!!

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 144

SWEED

Use Cases: Limitations
s Does not explicitly capture domain knowledge
s Difficult to find redundant and conflicting behavior

between use cases
s No rules for controlling decomposition (e.g. when

use cases are decomposed into sub-use cases)
s Pushing use case decomposition too far leads to:

u a functional decomposition design
u design details that are best expressed in a more

suitable notation

s Being a primary actor goal-oriented approach,
secondary actors tend to be neglected

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 145

SWEED

Use Cases: Limitations

s Are not a precise specification:
u do not provide support for a consistent level of

precision,

u are prone to ambiguity and redundancy in their
descriptions,

u do not provide adequate means for dealing with
interactions between use cases,

l a well-known problem in telecommunication systems,
called feature interaction

u cannot express state-dependent system behavior
adequately.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 146

SWEEDFormalizing Use Cases: The
Fondue Approach
s Use Cases + Operation Schemas offer

some fixes to previous problems
u Operation schemas are concerned with clarifying

what the system offers, i.e., they expand on the
system responsibilities (defined by the use cases)
in a precise way.

u The two views complement each other nicely: use
cases provide the informal map of interactions
between the system and actors, whereas
operation schemas precisely describe a particular
atomic system action, called a system operation.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 147

SWEEDFormalizing Use Cases: The
Fondue Approach
s What do Operation Schemas offer?

u Allow a more constant level of precision & clarify
where one has to stop decomposition by focusing
on system interface

u Support for modeling concurrency and
performance constraints

u A more focused description for developers (less
noise) — centered on system responsibilities
(obligations)

u Easier to schedule design activities because
development increments relate better to system
operations than to user goals

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 148

SWEED

Operation Schemas

s A schema declaratively describes changes to an
abstract description of system state by pre- and
postconditions.

s Precondition: assumption about state before the
execution of the operation.

s Postcondition: required state after operation
execution + output events that were sent.

s Uses UML’s Object Constraint Language, and is
applied to a UML class model.

s There is a straight mapping between use cases and
operation schemas. [Sendall & Strohmeier ‘00]

SWEED

Lesson 8

Relating Use Cases with Business
Process Modeling & with Non-

Functional Requirements

Advanced Issues in
Writing Use Cases

Relating Use Cases with
BPM & with NFRs

User Interface Description
with Conversations

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 150

SWEEDRelating Use Cases with
Business Process Modeling
s It is possible to utilize use cases to place the

system under development in the context of
the organization. It can be achieved by
documenting the business process by
enterprise scope use cases (white- and black-
box use cases).

s However, the business process may need
reengineering [Hammer et al. ‘01], in which case
more specialized models should be used [IBM
‘96]

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 151

SWEEDRelating Use Cases with
Business Process Modeling
s What needs to be identified:

u The stakeholders in the organization’s behavior
u The external primary actors whose goals you

propose that the organization satisfy
u The triggering events that the organization must

respond to
u The services the business offers, with success

outcomes for the stakeholders

s This is also the bounding information for a use
case

Source: Cockburn 2001

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 152

SWEEDRelating Use Cases with
Business Process Modeling
s A business process either generates value for

the business or alleviates costs to the
business.

s Business Process Model
u describes the business using a set of process flow

diagrams
l an ordering of activities to accomplish a business goal

(activities may be manual or automated)

u for application development, it provides a detailed
understanding of the business area that will be
supported or impacted by the new application —
provides justification/rationale or the contrary

Adapted from IBM OOTC 1996

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 153

SWEEDRelating Use Cases with
Business Process Modeling

s Connecting the BPM to Use Cases:
u Establish the scope of the work
u Establish the adjacent systems that surround the

work
u Identify the connection between the work and the

adjacent systems
u From the connections, identify the business

events that affect the work
u (cont’d)

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 154

SWEEDRelating Use Cases with
Business Process Modeling

s Connecting the BPM to Use Cases (cont’d):
u Study the response to the events (the work related

to each business event; might be a chain of work)
u Determine the best response that the organization

can make for the event
u Determine the system’s role in the response
u Determine the use cases for the system

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 155

SWEEDLinking Business to System
Use Cases

s Two levels (and two audiences)
s First level: Business use case

u describes business’ responses to user goals; often
contains no mention of technology (could be
automated or manual)

u audience: non-technical stakeholders, e.g.,
managers

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 156

SWEEDLinking Business to System
Use Cases
s Second level: System use case

u describes primary actor’s goal fulfillment but
concentrates on system functionality, interested in
only what is verifiable

u audience: technical stakeholders, e.g., developers
s Questions to navigate between the 2 levels

[Cockburn ‘01]:
u Do the use cases form a story that unfolds from

the highest- to the lowest-level goal?
u Is there a context-setting, highest-level use case

at the outermost “system” scope possible for each
primary actor?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 157

SWEEDRelating Use Cases to
Business Rules
s Business Rules are compiled into a catalogue

that categorizes and lists them.
u They can then be referenced by the use case (e.g.

hyperlink)

s [Ross ‘97] suggests five categories for
business rules:
u Structural Facts
u Action Restricting
u Action Triggering
u Inferences
u Calculations

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 158

SWEEDRelating Use Cases to
Business Rules

s Why centralize Business Rules in a
Catalogue?
u making business rules explicit enables them to be

reviewed, agreed and changed
u enables business rules to be discussed out of

context of particular applications
u factors out and defines at a single place

information which would otherwise be duplicated
across many work-products

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 159

SWEEDRelating Use Cases with Non-
Functional Requirements
s Non-Functional Requirements (NFRs) capture

required properties or qualities of the system about
how services have to be provided (rather than which
ones).

s They often relate to the system as a whole rather
than to a single feature.

s Failure to meet them can make the system unusable,
where a missing function may just degrade the
system.

s They should be identified while the functional
requirements are explored.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 160

SWEEDRelating Use Cases with Non-
Functional Requirements

s NFRs are generally difficult to express in a
measurable way, making them more difficult
to analyze.
u There has been some work on modeling NFRs as

“soft” goals [Mylopoulos ‘92].

s NFRs often have a large effect on
determining the architecture.
u Two systems with the same use cases but very

different NFRs may need very different solution
architectures.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 161

SWEEDRelating Use Cases with Non-
Functional Requirements

s Make cross-references in the use case to
related NFRs.

s Check:
u Examine your NFRs to see if your use cases can

address them. You might be able to refine, add or
drop use cases based on this.

s Questions:
u Are there timing, performance requirements, or

other interface requirements associated with
obtaining the service?

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 162

SWEEDReferencing Other Documents
from Use Cases

s Data Details and Format
u Abstract away from data details and formats in use

cases (avoids inconsistencies due to redundancies
and helps maintenance for the “tool challenged”)

u Store in a separate document and reference it in the
use case (i.e. hyperlink it)

s Project Constraints
u Organizational
u Operational
u Legislative and Ethical

s UI guidelines and requirements

SWEED

Lesson 9

User Interface Description with
Conversations

Relating Use Cases with
BPM & with NFRs

User Interface Description
with Conversations

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 164

SWEED

User Interface Description

s To users, the user interface is the system.
s However, use cases don’t describe the UI but they

are close (cases of use).
s A finer-grained description of elementary user tasks

that model UI interactions is needed.
s Layout and format issues must be added, e.g. by

references.
s A conversation is a structured narrative that

separates user intentions and system responses and
that concentrates on interaction between users and
the system.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 165

SWEED

Conversations

s Conversations are a special kind of use case
that can be used to informally describe a
dialog between user and system in terms of
action detail.

s Conversations use a table format, which
separates actor actions from system
responses.

s Conversations are most commonly used to
show (more) concrete behavior of a user with
the system.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 166

SWEEDExample: Conversation for
Order
Actor Actions System Responses
1. User places a new order.

2. System shows list of items.

3. User selects an item.

4. System provides pricing information
for item, i.e. quantities with discounts.

5. User specifies the quantity.

6. System verifies that quantity is
available.
7. System prompts User to finalize
order.

8.User confirms that he/she wants to
finalize order.

9. System finalizes order.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 167

SWEEDExample: Conversation for
Order (cont’d)
Extensions: -- as in use cases
6a. System ascertains that quantity demanded by User

is not available.
6a.1a. System informs the User that the item is out of
stock; conversation ends in failure.
6a.1b. System informs the User about available
quantity.

6a.1b.2a User agrees to this quantity;
conversation continues at step 7.

6a.1b.2b User denies the offer; conversation
ends in failure.

Precondition:
The customer has already been identified.

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 168

SWEEDTips for
Writing Conversations

s Avoid presentation details (e.g., System
displays a radio box for...),
u instead, reference UI format, layouts, guidelines

and requirements (e.g. with a hyperlink)

s Maintain a consistent level of detail.
s Don’t mention objects in system responses.
s Conversations can be constructed by

expanding use cases, but do NOT throw
away the use cases thinking that they have
now been “refined”.

SWEED

Extras

Lily’s Top Ten Use Case Pitfalls

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 170

SWEEDLily’s Top Ten Use Case
Pitfalls

s Problem #1:
u The system boundary is undefined or inconsistent.

l Be explicit about the scope, and label the system
boundary accordingly.

l Draw the system boundary.

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 171

SWEEDLily’s Top Ten Use Case
Pitfalls

s Problem #2:
u The use cases are written from the system's (not

the actors') point of view.
l Name the use cases from the perspective of the actor's

goals.
l Focus on what the system needs to do to satisfy the

actor's goal, not how it will accomplish it.
l Watch out when the use case model includes use cases

that are not directly associated with an actor, but are
associated with <<include>> or <<extend>>
relationships.

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 172

SWEEDLily’s Top Ten Use Case
Pitfalls

s Problem #3:
u The actor names are inconsistent.

l Get agreement early in the project about the use of actor
names (and other terms). Establish a glossary early in
the project and use it to define the actors.

l Make sure that the granularity of the use cases is
appropriate. Use cases should reflect "results of value" to
the system's users -- the attainment of real user goals.

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 173

SWEEDLily’s Top Ten Use Case
Pitfalls

s Problem # 5:
u The actor-to-use case relationships resemble a

spider's web.
l The actors may be defined too broadly. Examine actors

to determine whether there are more explicit actor roles,
each of which would participate in a more limited set of
use cases.

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 174

SWEEDLily’s Top Ten Use Case
Pitfalls

s Problem #6:
u The use case specifications are too long.

l The granularity of the use case may be too coarse.

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 175

SWEEDLily’s Top Ten Use Case
Pitfalls

s Problem #7:
u The use case specifications are confusing.

l Include a Context field in your use case specification
template to describe the set of circumstances in which
the use case is relevant. Make sure that the Context field
puts each use case in perspective, with respect to the
"big picture" (the next outermost scope). Don't just use it
to summarize the use case.

l (cont’d)

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 176

SWEEDLily’s Top Ten Use Case
Pitfalls

l Rewrite the steps to focus on a set of essential
interactions between an actor and the system, resulting
in the accomplishment of the actor's goal.

– Break out conditional behavior ("If...") into separately
described alternate flows.

– Use case steps are not particularly effective for
describing non-trivial algorithms, with lots of
branching and looping. Use other, more effective
techniques to describe complex algorithms (e.g.,
decision table, decision tree, or pseudo-code).

– Make sure that the steps don't specify
implementation. Focus on the external interactions.
Consider expressing some of the behavior as "rules,"
rather than algorithms.

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 177

SWEEDLily’s Top Ten Use Case
Pitfalls

s Problem #8:
u The use case doesn't correctly describe functional

entitlement.
l Make sure that each actor associated with a use case is

completely entitled to perform it. If an actor is only
functionally entitled to part of the use case, the use case
should be split.

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 178

SWEEDLily’s Top Ten Use Case
Pitfalls
s Problem #9:

u The customer doesn't understand the use cases.
l Teach them just enough to understand.

– Put a short explanation of use cases in the use case
document, as a preface or appendix. The
explanation should include a key to reading the
model and specifications, and a simple example.

– Lead a short training session when the use case
document is distributed for review.

– Think long and hard about using <<includes>> and
<<extends>> relationships in the use case model.
They are a modeling convenience, but are not at all
intuitive to the inexperienced reviewer.

l (cont’d)

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 179

SWEEDLily’s Top Ten Use Case
Pitfalls

l Add information to tell the story:
– Include a Context section in the use case template.
– Add an overview section that provides context to a

set of related use cases (e.g., a package), and use
this section to "tell the story."

– Include other kinds of models as needed. Often, a
single use case will result in a state change to a
major domain object, but the use case model alone
won't tell the story of how the object changes state
across many use cases over time. A state model
(state transition diagram) of a major domain object
may be an excellent way to show how several
related use cases fit together over time.

l (cont’d)

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 180

SWEEDLily’s Top Ten Use Case
Pitfalls

l Determine what strategy for organizing the use cases
makes the most sense to the customer. Listen to how the
customer describes the business.

l Watch out for computer slang that is not part of the
customer's vocabulary.

l Deliver what the customer wants. This doesn't mean that
use cases can't be used as a requirements elicitation
technique (if they are really the right tool for the job). But
they might not be a primary delivered work product.

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 181

SWEEDLily’s Top Ten Use Case
Pitfalls

s Problem #10.
u The use cases are never finished.

l Don’t get into user interface details.
l In the flows, focus on the essentials of what the actor

does.
l Specify use case "triggering" events as preconditions

(e.g., "user has selected a game, and requested to order
tickets"), rather than screen navigation details. Keep the
screen navigation information in a (separate) user
interface design document, not in the use case model.

l (cont’d)

Source: Lily 1999

Requirements Analysis with Use Cases, v1.0 ©SWEED 2001, S. Sendall, A. Strohmeier 182

SWEEDLily’s Top Ten Use Case
Pitfalls

l Watch out for "analysis paralysis." There is a point at
which the requirements are adequately specified, and
further analysis and specification does not add quality.
Cover the "80%" cases; do your best on the rest within
the allocated budget of time and money.

l Use cases have a simple, informal, and accessible
format. Use cases are a mechanism for defining and
documenting operational requirements, not magic.

Source: Lily 1999

