
Beyond Use Cases
Graham McLeod
University of Cape Town, Pvt Bag Rondebosch, 7700, South Africa
mcleod@iafrica.com, tel +27 21 650 4028, cell +27 82 578 1834

Abstract

UML is widely accepted as a standard. It is competent in system level modeling and static structure analysis but
lacks constructs for enterprise and business process modeling: areas which are vital for a competent technique:
especially given the trend to use object technology to support enterprise engineering and implement value chains
transcending organizational boundaries.

The author previously extended the Martin/Odell OOA/D methods to incorporate stakeholder, enterprise, value
chain and business modeling techniques. In 1998, equivalent extensions were proposed to UML to cope with
enterprise and business process modeling. The approach has since been refined through experience and has
proven effective in supporting sustainable business engineering. This paper reports the results of this experience
and proposes the replacement of Use Cases and other dynamic models within UML with process models which
transition seamlessly from stakeholder to design level. The suggested notation represents a Use Case and Activity
Diagram superset.

Need for Competent Process Modeling

Organizations face increasing pressure to deliver goods and services with higher quality, more cheaply and
more quickly. They must innovate and bring new offerings to market at a rapid rate. These challenges
require processes which are quicker, more effective and cheaper - i.e. consume less resources. [Taylor,
1994]. The transition to e-commerce has necessitated a rethinking of fundamental business models
[Seybold & Marshak, 1998]. Many organizations are concentrating on core competencies, outsourcing a
variety of other functions. These challenges mean that competent techniques are vital to assist analysts in
enterprise and business process modeling, and in the evaluation of competing alternatives. It is also
imperative to identify opportunities for leveraging technology in support of more effective processes, and
then to transition the revised business process models into system requirements and designs with minimal
effort and delay while preserving maximum fidelity.

Object Methods Appear Desirable

Object technology offers many potential benefits, including richer modeling, increased reliability, easier
integration and reduced costs and implementation times due to reuse [Taylor, 1994]. Organizations thus
seek to use object oriented analysis, design techniques and technology to meet the challenges mentioned
previously. When choosing methods, they are very likely to adopt the Unified Modeling Language (UML)
sanctioned by the OMG [OMG, 1999]. This occurs for a variety of reasons, including the following: UML
is “standard”; it is widely taught and publicised; it is rich; it is well supported by a variety of CASE tools;
it promises to provide all the necessary techniques in one integrated package. All of these are essentially
true, with the possible exception of the last reason, with which we will take issue.

UML Coverage

The UML specifies a notation for analysis and design models. It does not prescribe a method or process for
how these should be used. UML has powerful techniques for expressing many facets during the analysis
and design stages of a project including:

1

Component and Deployment DiagramsSpecific implementation choices
Activity DiagramDetailed sequence and dependency of activities
State DiagramChanges in state of an object over time

Collaboration DiagramResponsibilities for dynamic behaviour within the
system

Sequence DiagramSequence of collaboration between objects

Use CaseInteraction of a user with a system to achieve a
single goal

Static Structure/Class DiagramDomain knowledge required to support the
application

UML ArtefactRepresentation of

UML is thus richly endowed with techniques to express the results of systems-level modeling and design
choices. There is little, however, to express high level views of the organization or processes and to assist a
business engineer in choosing among competing alternative processes or business models. [Jacobson,
Ericsson and Jacobson, 94] have described the use of use cases in support of business process engineering,
but the approach still lacks the semantics to facilitate the above fully.

Shortcomings of UML

UML may be too rich. An analysis of UML 1.1 by [Xavier Castellani, 1998] revealed a total of 233
discrete concepts. This can lead to difficulties in teaching it, learning it and applying it in projects. We have
observed in our work in industry, that many projects enter an extended phase of use case modeling but
flounder when attempting to translate these into detail requirements and rigorous specifications necessary
for sound design.

Other authors, including [Anthony Simons, 1999; Brian Henderson-Sellers, 1999] have pointed out that
there are many inconsistencies and gaps in the semantics of the UML.

In our opinion, there are some fundamental problems in using use cases for enterprise and business process
modeling in support of enterprise engineering:
� A system centric view is encouraged too early
� There is no adequate means to show what is computerised or manual in a complete business process
� There is no sense of flow, dependencies and probability of pursuing various paths
� There is no accounting for costs and resource consumption
� There is inadequate definition of inputs and outputs
� There is no mapping to organizational responsibilities, or geographic locations
� There is no means to express timing or synchronisation
� It is difficult to show parallelism explicitly
� There is no verification of the domain model
� Without consulting narratives, it is difficult to determine which steps are optional and which comprise

the “normal case”

Requirements for a Competent Approach

We developed a list of criteria [McLeod, 1999] for a competent approach. The technique should:
� Use same notation for current and future models to allow direct comparison of alternatives

2

� Show complete business process including manual, partially computerised and fully automated
processes

� Indicate how process is initiated
� Identify people and organisational groups involved
� Show sequence and dependencies of activities based upon state of business objects affected
� Allow synchronous, asynchronous and parallel activities
� Validate and link to business object domain model (class diagram)
� Show possible outcomes which can trigger other steps
� Allow steps to be other embedded processes
� Be instrumented to allow analysis and improvement
In addition, there were a number of desirable features, including:
� Models should be usable with users, analysts and designers (and in JAD sessions)
� Familiar techniques with wide support in industry to ensure CASE tool availability
� Object orientation
� Easy transition to rigorous design- level models
� Ability to show location, responsibility
� Ability to link resources, specify constraints, calculate costs and timing

Towards a Solution

From 1992-1997, the author and colleagues evolved an approach based upon the Martin/Odell OOA/D
techniques and notation, but incorporating many innovations from the work of [Ulrich Frank, 1994] at the
Geselschaft fur Matematik und Datenverarbeitung (GMD); [David Taylor, 1994] and various Business
Reengineering authors [Hammer, 1990, Porter, 1985, Jacobson et al, 1994]. This provided a mapping from
stakeholder models, via value chain identification, to business process models, and finally event models.
Rather than being discrete, these models evolved using a common notation, enhanced at various levels of
detail to add more fidelity and rigour as analysis proceeds.

When UML was adopted as a standard, we sought to express our models in a UML-friendly notation. In
1998, we presented a notation which extemded the (then new) activity diagrams within UML to accomplish
our purposes [McLeod, 1998]. We chose activity diagrams as being the closest to the techniques we had
used previously. This is not surprising, since the UML activity diagrams draw heavily on the Odell event
modeling technique.

Recent Work - CASE and Repository Support, Tighter Linking to Other Models
Since the 1998 paper, we have used the revised techniques in teaching, consulting and projects. A
supporting CASE tool was built using Visio™ as a graphical engine, but with a customised repository to
support the necessary properties. This necessitated a formal analysis of the meta-model to support the
process models. The theoretical base of the techniques was enhanced and the fuller notation presented at the
Tools Europe workshop in June 1999 [McLeod, 1999].

Context Provided by Architectures
Over the past three years, we have evolved a comprehensive set of architectural frameworks which cover
business, information, application and technology infrastructure facets. An element of the business
architecture is business processes. We consulted these models and integrated some further high level
properties required by this strategic and architecture view into our business process models. The
refinements since the 1998 paper, together with this, more strategic perspective, provide a notation and
associated properties that is rich enough to support process modeling from a very high level (stakeholder
view), through business engineering and process improvement, all the way down to system activity models

3

which are at least as rigorous as a UML sequence diagram. A major benefit is the seamless transition from
high level to detailed views without loss of fidelity.

The process architecture is shown below:

Partners

Business
Communication

Location

Step Step Step Step Step
Decision Decision Decision DecisionStakeholder

Business
Event

Business Process

Step Step Step Step Step
Decision Decision Decision Decision

govern

Business Rules
occurs at

triggers

includes

Business
Object

responsibile
for

Organization

initiates

Business
Goal

supports

uses/
generates

uses/
changes
state of

Product/Service

produces

Resource

used
by

provides

received
by

Key
Indicators

monitored
by

SubProcess

uses/
supports

Application
System

Figure.1 - Inspired Frameworks© Process Architecture

In this picture, we can see the following elements:
� The business process is seen as a sequence of steps and decisions. It may include sub-processes as

steps
� The process is triggered by a stakeholder (which is anyone who interacts with the enterprise) initiating

a business event. Examples would be requesting a new account, ordering a product, requesting
payment for goods provided..

� The business process is governed by rules and policies which the enterprise may establish, or which
may be mandated by law

� Various parties (internal organizational units and external partners) are responsible for the
performance of particular steps

� Steps in the process will occur at a variety of locations (physical or organizational)
� The process should support one or more expressed business goals
� The process effectiveness can be measured by one or more key indicators
� Various business communications may be produced as a result of the process e.g. Statements,

contracts, letters etc.
� The process may reference or update the state of various business objects, such as customer, product

and agent information
� The process will usually produce a product, a service, or combinations of these
� Parts of the process are likely to use or be supported by application systems
� The process is likely to consume resources, such as staff time, money, raw materials, etc.

4

� We would like to know the time that the process may take (current/desired as well as minimum/average
and maximum), the costs of performing the process and the frequency of occurrence per unit time.
These values may only be available later from more detailed modeling

This framework provides a powerful model for discussing the relevant business processes with business
executives. It is non-technical and allows us to focus on the essential issues related to the process, the
objectives and the context of the process, without becoming bogged down in the detail of how the process is
done now, or should be done in future. Once these issues have been clarified, we can move on to detailed
modeling of current processes and engineering of new processes where necessary or appropriate. Once a
suitable process is defined, we need to evolve the logical view into a specification and design for
computerised support, where appropriate. The following section presents a modeling notation suitable to
these tasks. It is followed by examples illustrating their use at different levels.

The Process Notation

The notation is a superset of use cases (borrowing actors, system boundary and activity bubbles) and
activity diagrams (activities, dependencies, synchronisation, annotation of outcomes). We introduce it
below:

Differentiating Activity Types
Activities are shown in UML with an elipse. We use a rounded corner box, since it allows more text to be
captured easily. Recall that our process models will include a complete business process, not just the
computerised activities. We make use of the UML stereotype mechanism which allows adding notation to
the model. Stereotypes may be expressed as a text within guillemets, thus: <<text>> or as an icon. We use
these mechanisms to show which activities within a diagram are performed manually, with computerised
support (but still requiring human interaction), in a fully automated fashion, or represent embedded
processes. In text form these are shown thus: <<manual>>, <<supported>> and <<automated>> and
<<embedded>>. As icons, they may be shown thus:

+

 Manual Computer Fully Embedded
 Supported Automated

Agents
We borrow the use case stick man for human actors interacting with the process. We extend this to two
forms:

 Internal External

These can represent individuals, classes of users, or organizational units.

5

Inputs and Outputs
Borrowing from earlier methods of data flow and event models, we document inputs from and outputs to
Agents. On high level models we simply name them on the directional link. This is similar to use case
conventions.

Purchase
Request Capture

Order

On more detailed models, we show them as a large bidirectional arrow, and define their attributes in detail.
 We optionally define a type, which uses the same symbol, shadowed.

GUI

SCR1 Capture
Order

Figure.2 - Referencing IO Specification on the model

At a minimum, we must know the details of the data items which are input or output, their types and the
medium through which the input or output will occur. We may document these details in the form of a
view, as shown below. A view is not unlike a class, but usually without behaviours. In some tool
environments, we have documented these views in UML static model diagrams, using a stereotype of
<<View>> to distinguish them from domain classes. The data items mentioned should, of course, be in the
repository where they can be typed, described and have legal values and ranges specified.

Medium:online capture from graphical user interface

Date: aDate
Time: aTime
Location: aBranch
Customer: aCustomer
Products: aCollection of Products
RecordedBy: anOperator

<<View>>
Purchase Request (SCR1-GUI)

Figure.3 - Example of a view definition

The view should have a unique reference, which we can use to link it to the flow on the graphic model.

Where prototyping is done, the IO ID can reference a prototype artifact, such as a screen, report, or other
layout.

6

Triggers
Steps or activities in a process can be triggered by various means, including:
� Input from Agent

Capture Order

� Outcome from another activity

Raise
Interest

Print
Statement

� Time (reached or elapsed), where we show a clock face, and the relevant condition

End of
Month

Raise
Interest

Arrow heads on links are optional if the flow direction is the default left to right and top to bottom.

Selective Invocation
Entry to some activities will be optional, or based upon certain criteria or conditions being met. These can
be shown as follows:

Either Condition Should Trigger the Activity

End of
Month

Statement
Request

Produce
Statement

Activity is only triggered when all conditions are met

Produce Statement will only be triggered if a Produce Statement will only be triggered if a
statement is requested and the account has a statement is requested and the account has a
non-zero balancenon-zero balance

Although default is "AND",
the control condition can
contain any evaluation
required (see Rules)

Account
Balance <> 0

Debit
Customer

Request
Statement

Produce
Statement

7

Outcomes
Activities often produce outcomes. On high level models, we express these as an annotation emerging from
an activity. If there are multiple possibilities, we can show them and what ensuing activity they trigger. As
with Inputs, we simply label them on high level models. They will become more rigorous on design level
models.

Assess
Credit Risk

OK

BAD

Where we know the relevant numbers and want to do detailed statistical analysis of the models, we can
include probabilities of various outcomes being reached. These are shown as a decimal fraction between 0
and 1, with 1 being certainty. Outcomes can be disjoint, in which case they are shown as emerging from a
synchronisation bar. If they are not joined by a sync bar, then they can occur simultaneously. Thus in the
following model, we can Accept or Decline (but not both) while Commission may be due in either case.

Approve
Order

Accept .8 Decline .2

Commission
Due

Linking the Activities to the Domain Object States
On high level models, we show outcomes fairly informally. To make our specification more rigorous and to
validate the dynamic model against the static model (domain model), we now become more formal in the
specification of outcomes during detailed analysis. Specifically, we document the effect of the activity on a
domain object type (class) by recording the state that the object will reach. The notation is as follows:

[Object Type] [State]
E.g.

CUSTOMER Debited
ORDER Created
STOCK Decreased

Outcomes on the graphical models are updated to reflect this more formal view.

Capture
Application

Client
Created

Application
Recorded

As with the less formal ones on business process models, the outcomes may be independent, as above, or
mutually exclusive, as below.

Debit
Account

Account
Active

Overdrawn

8

Typical Outcomes (Event Types)
Typical event types that we will be interested in include the following:
� Object creation, deletion or reclassification
� Instances of collections are added or dropped
� The state of an object is changed by updating attributes
� An external event is processed or initiated

e.g. We get input from the user or change the state of a device

Decomposition and Expansion
Some activities result in multiple events, i.e. they alter the state of several underlying business objects.
Where this occurs, we decompose those activities further, until we reach a level where the activities affect
only one type of object (class).

Figure.4 - Activites affecting multiple object types are decomposed

This has several advantages:
� It provides an exact guide to the modeler, as to when to decompose and when to stop, which was often

lacking in previous methods (e.g. Functional decomposition or data flow diagramming)
� If an activity affects the state of only one object type (class), then it is a candidate for a method to be

mapped to a domain class.

Reuse
To facilitate reuse, we can identify common processing elements which can be common to a variety of
subprocesses. In the example shown, there are common issues in processing all kinds of transaction (e.g.
Checking authorisation, logging). These common elements can be held at a generic level and “inherited” by
sub-processes. The hierarchy in the event diagram should match that of the domain model classes, allowing
us to map the common issues into methods on the parent class, while mapping the specifics to methods on
the subclasses.

Verify
Client

Client
Valid

Process
transaction

Transaction
Created

WithdrawalDepositEnquiry
Account
Debited

Account
Credited

Figure.5 - Common logic in event model

9

Here, all types of transaction will result in a transaction being recorded, but other activities differ.

Swim Lanes and Bounding Boxes
UML offers the concept of swim lanes to group activities which affect the same class of objects. We extend
the idea to allow us to group things for a variety of purposes. We also allow the use of bounding boxes for
similar purposes. We use them to show:
� Organizational responsibility
� Geographic location
� Business Objects Affected (system level models)
� Logical Transaction Start and Commit (deisgn level models)
� Platform for deployment (design level models)
We can have several layers or overlays per model.

Rules
Rules can be linked to our process models as guard conditions, specifications for how actions are
performed or general policies which apply to the process overall. See the examples that follow:

Rules can be specified anywhere
As simple text on high level models
Or identified by diamond with reference to rule base

Class names are capitalised
All data items mentioned should
be defined in domain model

If StockOnHand < ReorderLevel
and no PURCHASE ORDER issued
then ...

When QuantityOnHand < TotalDailyOrders for PRODUCT
issue to CUSTOMERS with PriorityStatus 1 first,
place BACKORDERS for CUSTOMERS not satisfied

StockOnHand = PhysicalStock - CommittedStock

Figure.6 - Rules added to Process Model

We may wish to specify conditions which “guard” access to the activity that must be met before that
activity will run. They are shown as a rule, with a diamond symbol, at the entry to the activity. A
post-condition would be specified on exit from the activity, and could say under which conditions the
activity will complete, or could specify under what conditions the activity will notify the system of an event
of interest to other parties. We can also have derivation rules specified within the activity for how results
will be arrived at, e.g. A calculation formula or algorithm. Finally, we can have a rule which is attached to
the diagram as a whole, to express more complex business policies which may affect the overall process.

If we want rigorous rules, we express them in Object Constraint Language (OCL) [OMG, 1999b] which
can appear on any model enclosed in braces viz. {rule}.

10

Hyperlinks and Multimedia
Borrowing from the CREWS (Customer Requirements Elicitation With Scenarios) Project philosophy, as
presented at CAiSE'99, we allow hyperlinks to be placed on model elements (usually the name) which will
link to further information. This can be in the form of web pages, documents, databases or other forms.

Resources
If we want to model the resources consumed by a process, or see the impact of resources as constraints or
on costs, we can add resources to the model. Generally, resources are consumed or produced by activities.
We can specify the resource usage in the properties of the activity, or we can show them graphically on the
model. Resource types use the same symbol, but shadowed. The type allows us to specify constraints on the
number of a given resource type available, e.g. We have 10 Clerks. We can also use it to hold a cost rate
per unit of consumption.

Store
Staffer

Sales
Assistant

Fill Form

5 mins

Example

Using the above devices, we can now look at an example which will illustrate their use. We begin with a
process intent model at the architecture level, then show its evolution to a business analysis stage and,
finally, to a design level model for the computerised portion of the business process.

Our example deals with the processing of a customer sale, from receiving the original request to purchase,
through checking the customer identity and credit, checking stock (potentially ordering from a supplier if
insufficient), charging the customer account and fufilling the order by arranging delivery through a partner
organization.

11

Time to Delivery
Return Rate

Customer
Supplier

Stakeholder

Discount Policy

Business Rules

Sales
Purchasing
Customer Relations
Delivery
Accounting

Organization

Low Cost per Sale
Increased Sale
Volume
Good customer
experience

Customer Sale

Business
Goal

Key Indicators

Purchase Request
Delivery Note

Business
Communication

Customer
Product
Supplier
Order
Supplier Order
Delivery Request
Supplier Invoice

Business
Object

Goods

Order Taking
Customer
Management
Fullfillment
Debtors

Supplier Order

Applications Product or
Service

Business
Objects/State

Sub-Processes

Sales People
Vehicles
Storeman

Resources

Our retail
premises
Supplier
Warehouse

Location

Figure.7 - Process Architecture for Customer Sale

Using the intent model as a starting point, we would develop a business process model. Often we will build
an "as is" picture, as well as a "desired future" picture. For our example, the business process model
appears as follows:

Confirm
Sale with
Salesperson

Capture
Sale

Deliver
Goods

Advise
Customer

Check
Credit

.2

.8

Cash
Sale

Credit

Supplier

Sales
Person

OK

Not OK

.9

.1

Issue
Stock

Customer

.95
Sufficient

.05 Insufficient

Stock
Received

Obtain +
Stock ex
Supplier

Delivery
Date

Sales

Store
man

Vehicle

Retail Store

Customer Relations

Warehouse

Figure.8 - Sale Business Process

12

Instrumenting the Process Model
We can add properties to the activities to express the following:
� Minimum, average and maximum duration of the activity (current, target)
� Lead time before the activity can commence (e.g. waiting for external activity). Minimum, average and

maximum can be expressed if desired
� Organizational responsibility (which department, section, business unit performs it)
� Resources consumed (type of resource, unit of measure and consumption minimum, average and

maximum)
� Number of servers - the number of resources available to perform the activity. This allows us to

gauge the effect of adding or subtracting resources without changing the model structure
� Geographic location(s) (where the activity can be performed)
� Cost of performing the activity once (current, target)

All of the above extensions are optional. We may use the model to simply express the process and the flow,
or add as much detail as desired or available. The more detail we add, the richer the understanding of the
business process. A fully attributed model can allow sophisticated analyses of competing business process
alternatives including:
� Determining the duration (minimum, average, worst case) of the overall business process using critical

path techniques as used in project management.
� Project Evaluation and Review (PERT) techniques can be used to determine most likely times and

probabilities of meeting various time benchmarks if required. A full treatment of these is not possible
here, please consult [Kerzner, 92; McLeod 98]

� The cost of performing the process can be calculated by summing the costs of all activities traversed.
Where activities are traversed more than once (e.g. picking stock for each line on an order), the sum of
these occasions would be included. Where activities are optional, the probability of performing the
activity times the cost will be included if we calculate an overall average scenario; or we can calculate
the cost of various scenarios by computing the cost of specific paths

� The resources consumed can be calculated in a similar manner to costs
� Queuing effects can be brought into play. If the arrival rate of new requests for the process is such that

a new request will arrive at an interval shorter than the processing time, then queuing will be
experienced. We can use standard queuing network analysis techniques to determine the effect of such
queuing on experienced duration by the initiating actor

Once we have a specification for how the process should be accomplished in business terms, we can extract
the computerised elements and subject these to further analysis, adding rigour by defining the inputs and
outputs in detail, and recording the effects of operations on state of domain objects. The system level model
for our example follows.

13

Capture
Sale

Advise
Customer

Conclude
Sale

Supplier

Sales
Person

Customer Creditworthy.9

.1

Check
Stock

Customer

.95 Sufficient

.05 Insufficient

Stock
Received
Purchase
Order
Filled

Obtain +
Stock ex
Supplier

Delivery
Date

Cash
Sale

Credit
Sale

.2 .8

Approve
Backorder

Approve
Backorder

 Stock

Sale
Created
Product
Valid

Customer Not
Creditworthy

Stock
on order
Purchase
Order
created

Backorder
Created

Customer
Debited
Stock
Issued

Sale
complete

Deliver
Goods

Delivery
Note

D1

Rule D1
Discount Calculation
Allow Discount only for
Category 1 and 2 Clients
on Product with Margin >
25%

Purchase
Request

Purchase
Order

Logical Tx
Sale

Logical Tx
Backorder

Figure.9 - System Level Model

Note the use of inheritance to factor common processing; bounding boxes to show logical transaction
boundaries; a rule to capture the policy with respect to discount; and the more rigorous definition of
outcomes in respect of the state achieved for affected business objects.

Design Level Models
As we transition our logical level models to design, we need to consider a number of issues. We discuss
these below.

� Technical Objects and Events: We may need to add extra activities and events dealing with issues such
as security, integrity and auditability. Examples would include logon procedures, logging updates,
writing to an audit trail and so on. In some cases, we will need to add new items to our static model e.g.
We may need a class for Authorisations to link users to permitted activities. We would add these to our
class diagram. This is now evolving to be more than a domain model, to include system level classes
which may not necessarily form part of the business domain. Nonetheless, the classes added will use
the same notation and adhere to the same principles as domain classes.

� Geographic or Platform Distribution: Bounding boxes can allow us to indicate platform allocation (e.g.
Client, Application Server, Corporate Server) or geographic split (e.g. Branch, Head Office).

� Capacity Planning and Performance Estimating: If we fully specify activities and detail resources and
volumes, the models can be used for capacity planning and performance estimating.

14

Advantages over Standard UML Approach with Use Cases

Our work with the approach in teaching and industry has shown the following advantages:
� The models provide a powerful means of showing business processes, from a high level business view,

right down to the detailed operation of the final system. This is important since there are no abrupt
transitions of approach between the business, logical and physical dimensions of the system. This
promotes user/analyst communication and ultimately results in applications which better match real
world requirements

� The lack of translation facilitates an iterative approach to development, where it is easy to cycle back
and enrich an existing model. This is much more difficult where several types of models are involved

� The rich attributes of the high level models permit competent business engineering and comparison of
scenarios including elements of resources, costs, timing, location and organizational responsibility

� Validation of domain model
� Natural way of factoring functionality to match the corresponding data structures (held in the object

model). Decomposition is controlled by the stipulation that each activity should affect the state of just
one object type.

� Easy guided mapping of lowest level activities to methods of the appropriate class. In a previous paper
[Mcleod, 1998b] we showed the translation of event models into business process logic within a
layered design architecture. There is thus a natural and easy transition from high level business models
to the architecture of the actual runtime design.

Bibliography

Castellani, Xavier, 1998, An Overview of the Version 1.1 of the UML Defined with Charts of Concepts,
Proceedings UML’98 Beyond the Notation, International Workshop, June 3-4, 1998, Mulhouse, France

Frank, Ulrich, 1994, in Ege, R; Singh, M; Meyer, B (Hg): Technology of Object Oriented Languages and
Systems, Prentice Hall pp 367-380

Hammer, 1990, Re-engineering work: Don’t Automate, Obliterate, Harvard Business Review, July-Aug pp
104-112

Henderson-Sellers, Brian, 1999, Introduction to the OPEN Method with UML, Tutorial, TOOLS 29, June 7-10,
Nancy, France

Inspired, 1999, Inspired Architecture Frameworks, Inspired Box 384 Howard Place, 7450, South Africa, www.
inspired.org

Jacobson, Ivar; Erissson, Maria & Jacobson, Agneta, 1994, The Object Advantage: Business Process
Reengineering with Object Technology, Addison Wesley

Kerzner, Harold, 1992, Project Management: A systems approach to planning, scheduling and controlling,
Van Nostrand Reinhold

Martin, James & Odell, James 1993, Principles of Object Oriented Analysis and Design, Prentice Hall,
Englewood Cliffs, NJ

McLeod, Graham, 1992-1997, Advanced Systems Engineering with Objects, Inspired, Box 384 Howard Place
7450 South Africa

McLeod, Graham, 1998, Extending UML for Enterprise and Business Process Modeling, Proceedings UML’98
Beyond the Notation, International Workshop, June 3-4 1998 Mulhouse, France.

15

McLeod, Graham, 1998b. Linking Business Object Analysis to a Model View Controller Based Design
Architecture, Proceedings of the Third CAiSE/IFIP 8.1 International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design EMMSAD’98, Pisa, Italy, June 8-9, 1998

McLeod, Graham, 1999, Comprehensive Object-Oriented Business Process Modeling, Proceedings TOOLS 29,
Nancy, France June 7-10, 1999, IEEE Computer Society

OMG, 1999, OMG Unified Modeling Language Specification, Vsn 1.3, Object Management Group, June 1999

OMG, 1999b, OMG Object Constraint Language Specification, Object Management Group, June 1999

Porter, Michael and Millar, VE; 1985, How Information gives you Competitive Advantage, Harvard Business
Review, July-Aug pp 149-60

Rational Corporation, 1997, UML Notation Guide, version 1.0, Rational Corporation

Seybold, Patricia & Marshak, Ronni, 1998, Customers.com: How to create a profitable business strategy for
the Internet, Century Business Books

Simons, Anthony, 1999, Use Cases Considered Harmful, Tools 29, Proceedings of the TOOLS Conference June
7-10, Nancy, France, 1999, IEEE Computer Society

Taylor, David, 1994, Business Engineering with Objects, John Wiley

16

