
Customer Rights and Responsibilities1

Karl E. Wiegers
Process Impact

www.processimpact.com

Software success depends on developing a collaborative partnership between software
developers and their customers. Too often, though, the customer-developer relationship becomes
strained or even adversarial. Problems arise partly because people don’t share a clear
understanding of what requirements are and who the customers are. To clarify key aspects of the
customer-developer partnership, I propose a Requirements Bill of Rights for software customers
and a corresponding customer’s Requirements Bill of Responsibilities. And, because it’s
impossible to identify every requirement early in a project, the commonly used—and sometimes
abused—practice of requirements sign-off bears further examination.

Who Is the Customer?

Anyone who derives direct or indirect benefit from a product is a customer. This includes
people who request, pay for, select, specify, or use a software product, as well as those who
receive the product’s outputs. Customers who initiate or fund a software project supply the high-
level product concept and the project’s business rationale. These business requirements describe
the value that the users, developing organization, or other stakeholders want to receive from the
system. Business requirements establish a guiding framework for the rest of the project;
everything else that’s specified as a requirement should help satisfy the business requirements.

The next level of requirements detail comes from the customers who will actually use the
product. Users can describe both the tasks they need to perform—the use cases—with the
product and the product’s desired quality attributes. Analysts (individuals who interact with
customers to gather and document requirements) derive specific software functional requirements
from the user requirements.

Unfortunately, customers often feel they don’t have time to participate in requirements
elicitation. Sometimes customers expect developers to figure out what the users need without a
lot of discussion and documentation. Development groups sometimes exclude customers from
requirements activities, believing that they already know best, will save time, or might lose control
of the project by involving others. It’s not enough to use customers just to answer questions or to
provide selected feedback after something is developed. Your organization must accept that the
days of shoving vague requirements and pizzas under the door to the programming department
are over. Proactive customers will insist on being partners in the venture.

For commercial software development, the customer and user are often the same person.
Customer surrogates, such as the marketing department, attempt to determine what the actual
customers will find appealing. Even for commercial software, though, you should get actual users
involved in the requirements-gathering process, perhaps through focus groups or by building on
your existing beta testing relationships.

1 This paper was originally published in Software Development, December 1999. It is reprinted (with
modifications) with permission from Software Development magazine.

Requirements and the Software Customer Page 2

Copyright © 1999 by Karl E. Wiegers

The Customer-Development Partnership

Quality software is the product of a well-executed design based on accurate requirements,
which are in turn the result of effective communication and collaboration—a partnership—
between developers and customers. Collaborative efforts only work when all parties involved
know what they need to be successful, and when they understand and respect what their
collaborators need to succeed. As project pressures rise, it’s easy to forget that everyone shares a
common objective: to build a successful product that provides business value, user satisfaction,
and developer fulfillment.

Figure 1 presents a Requirements Bill of Rights for Software Customers, ten expectations
that customers can place on their interactions with analysts and developers during requirements
engineering. Each of these rights implies a corresponding software developer’s responsibility.
Figure 2 proposes ten responsibilities the customer has to the developer during the requirements
process. These rights and responsibilities apply to actual user representatives for internal
corporate software development. For mass-market product development, they apply more to
customer surrogates, such as the marketing department.

Early in the project, customer and development representatives should review these two
lists and reach a meeting of the minds. If you encounter some sticking points, negotiate to reach a
clear understanding regarding your responsibilities to each other. This understanding can reduce
friction later, when one party expects something the other isn’t willing or able to provide. These
lists aren’t all-inclusive, so feel free to change them to meet your specific needs.

Figure 1. Requirements Bill of Rights for Software Customers

As a software customer, you have the right to:

1. Expect analysts to speak your language.
2. Expect analysts to learn about your business and your objectives for the system.
3. Expect analysts to structure the requirements information you present into a software

requirements specification.
4. Have developers explain requirements work products.
5. Expect developers to treat you with respect and to maintain a collaborative and professional

attitude.
6. Have analysts present ideas and alternatives both for your requirements and for

implementation.
7. Describe characteristics that will make the product easy and enjoyable to use.
8. Be presented with opportunities to adjust your requirements to permit reuse of existing

software components.
9. Be given good-faith estimates of the costs, impacts, and trade-offs when you request a

requirement change.
10. Receive a system that meets your functional and quality needs, to the extent that those needs

have been communicated to the developers and agreed upon.

Requirements and the Software Customer Page 3

Copyright © 1999 by Karl E. Wiegers

Requirements Bill of Rights for Software Customers

Right #1: To expect analysts to speak your language. Requirements discussions should
center on your business needs and tasks, using your business vocabulary (which you might have to
convey to the analysts). You shouldn’t have to wade through computer jargon.

Right #2: To expect analysts to learn about your business. By interacting with users
while eliciting requirements, the analysts can better understand your business tasks and how the
product fits into your world. This will help developers design software that truly meets your
needs. Consider inviting developers or analysts to observe what you do on the job. If the new
system is replacing an existing application, the developers should use the system as you do to see
how it works, how it fits into your workflow, and where it can be improved.

Right #3: To expect analysts to write a software requirements specification (SRS).
The analyst will sort through the customer-provided information, separating actual user needs
from other items such as business requirements and rules, functional requirements, quality goals,
and solution ideas. The analyst will then write a structured SRS, which constitutes an agreement
between developers and customers about the proposed product. Review these specifications to
make sure they accurately and completely represent your requirements.

Right #4: To have developers explain requirements work products. The analyst might
represent the requirements using various diagrams that complement the written SRS. These
graphical views of the requirements express certain aspects of system behavior more clearly than
words can. Although unfamiliar, the diagrams aren’t difficult to understand. Analysts should
explain the purpose of each diagram, describe the notations used, and demonstrate how to
examine it for errors.

Right #5: To expect developers to treat you with respect. Requirements discussions
can be frustrating if users and developers don’t understand each other. Working together can
open each group’s eyes to the problems the other faces. Customers who participate in
requirements development have the right to have developers treat them with respect and to
appreciate the time they are investing in project success. Similarly, demonstrate respect for the
developers as they work with you toward your common objective of a successful project.

Right #6: To have analysts present ideas and alternatives for requirements and
implementation. Analysts should explore ways your existing systems don’t fit well with your
current business processes, to make sure the new product doesn’t automate ineffective or
inefficient processes. Analysts who thoroughly understand the application domain can sometimes
suggest improvements in your business processes. An experienced and creative analyst also adds
value by proposing valuable capabilities the new software could provide that the users haven’t
even envisioned.

Right #7: To describe characteristics that will make the product easy and enjoyable
to use. The analyst should ask you about characteristics of the software that go beyond your
functional needs. These “quality attributes” make the software easier or more pleasant to use,
letting you accomplish your tasks accurately and efficiently. For example, customers sometimes
state that the product must be “user-friendly” or “robust” or “efficient,” but these terms are both
subjective and vague. The analyst should explore and document the specific characteristics that
signify “user-friendly,” “robust,” or “efficient” to the users.

Right #8: To be presented with opportunities to adjust your requirements to permit
reuse. The analyst might know of existing software components that come close to addressing
some need you described. In such a case, the analyst should give you a chance to modify your
requirements to allow the developers to reuse existing software. Adjusting your requirements

Requirements and the Software Customer Page 4

Copyright © 1999 by Karl E. Wiegers

when sensible reuse opportunities are available can save time that would otherwise be needed to
build precisely what the original requirements specified.

Right #9: To be given good-faith estimates of the costs of changes. People sometimes
make different choices when they know one alternative is more expensive than another. Estimates
of the impact and cost of a proposed requirement change are necessary to make good business
decisions about which requested changes to approve. Developers should present their best
estimates of impact, cost, and trade-offs, which won’t always be what you want to hear.
Developers must not inflate the estimated cost of a proposed change just because they don’t want
to implement it.

Right #10: To receive a system that meets your functional and quality needs. This
desired project outcome is achievable only if you clearly communicate all the information that will
let developers build the product that satisfies your needs, and if developers communicate options
and constraints. State any assumptions or implicit expectations you might hold; otherwise, the
developers probably can’t address them to your satisfaction.

Figure 2. Requirements Bill of Responsibilities for Software Customers

As a software customer, you have the responsibility to:

1. Educate analysts about your business and define jargon.
2. Spend the time to provide requirements, clarify them, and iteratively flesh them out.
3. Be specific and precise about the system’s requirements.
4. Make timely decisions about requirements when requested to do so.
5. Respect developers’ assessments of cost and feasibility.
6. Set priorities for individual requirements, system features, or use cases.
7. Review requirements documents and prototypes.
8. Promptly communicate changes to the product’s requirements.
9. Follow the development organization’s defined requirements change process.
10. Respect the requirements engineering processes the developers use.

Requirements Bill of Responsibilities for Software Customers

Responsibility #1: To educate analysts about your business. Analysts depend on you
to educate them about your business concepts and terminology. The intent is not to transform
analysts into domain experts, but to help them understand your problems and objectives. Don’t
expect analysts to have knowledge you and your peers take for granted.

Responsibility #2: To spend the time to provide and clarify requirements. You have
a responsibility to invest time in workshops, interviews, and other requirements elicitation
activities. Sometimes the analyst might think she understands a point you made, only to realize
later that she needs further clarification. Please be patient with this iterative approach to
developing and refining the requirements, as it is the nature of complex human communication
and essential to software success.

Responsibility #3: To be specific and precise about requirements. Writing clear,
precise requirements is hard. It’s tempting to leave the requirements vague because pinning down
details is tedious and time-consuming. At some point during development, though, someone must
resolve the ambiguities and imprecisions. You are most likely the best person to make those
decisions; otherwise, you’re relying on the developers to guess correctly. Do your best to clarify

Requirements and the Software Customer Page 5

Copyright © 1999 by Karl E. Wiegers

the intent of each requirement, so the analyst can express it accurately in the SRS. If you can’t be
precise, agree to a process to generate the necessary precision, perhaps through some type of
prototyping.

Responsibility #4: To make timely decisions. The analyst will ask you to make many
choices and decisions. These decisions include resolving inconsistent requests received from
multiple users and making trade-offs between conflicting quality attributes. Customers who are
authorized to make such decisions must do so promptly when asked. The developers often can’t
proceed until you render your decision, so time spent waiting for an answer can delay progress. If
customer decisions aren’t forthcoming, the developers might make the decisions for you and
charge ahead, which often won’t lead to the outcome you prefer.

Responsibility #5: To respect a developer’s assessment of cost and feasibility. All
software functions have a price and developers are in the best position to estimate those costs.
Some features you would like might not be technically feasible or might be surprisingly expensive
to implement. The developer can be the bearer of bad news about feasibility or cost, and you
should respect that judgment. Sometimes you can rewrite requirements in a way that makes them
feasible or cheaper. For example, asking for an action to take place “instantaneously” isn’t
feasible, but a more specific timing requirement (“within 50 milliseconds”) might be achievable.

Responsibility #6: To set requirement priorities. Most projects don’t have the time or
resources to implement every desirable bit of functionality, so you must determine which features
are essential, which are important to incorporate eventually, and which would just be nice extras.
Developers usually can’t determine priorities from your perspective, but they should estimate the
cost and technical risk of each feature, use case, or requirement to help you make the decision.

When you prioritize, you help the developers deliver the greatest value at the lowest cost.
No one likes to hear that something he or she wants can’t be completed within the project
bounds, but that’s just a reality. A business decision must then be made to reduce project scope
based on priorities or to extend the schedule, provide additional resources, or compromise on
quality.

Responsibility #7: To review requirements documents and prototypes. Having
customers participate in formal and informal reviews is a valuable quality control activity—indeed,
it’s the only way to evaluate whether the requirements are complete, correct, and necessary.

It’s difficult to envision how the software will actually work by reading a specification. To
better understand your needs and explore the best ways to satisfy them, developers often build
prototypes. Your feedback on these preliminary, partial, or possible implementations helps ensure
that everyone understands the requirements. Recognize, however, that a prototype is not a final
product; allow developers to build fully functioning systems based on the prototype.

Responsibility #8: To promptly communicate changes to the product’s
requirements. Continually changing requirements pose a serious risk to the development team’s
ability to deliver a high-quality product within the planned schedule. Change is inevitable, but the
later in the development cycle a change is introduced, the greater its impact. Extensive
requirements changes often indicate that the original requirements elicitation process wasn’t
adequate.

Changes can cause expensive rework and schedules can slip if new functionality is
demanded after construction is well underway. Notify the analyst with whom you’re working as
soon as you become aware of any change needed in the requirements. Key customers should also
participate in the process of deciding whether to approve or reject change requests.

Requirements and the Software Customer Page 6

Copyright © 1999 by Karl E. Wiegers

Responsibility #9: To follow the development organization’s requirements change
process. To minimize the negative impact of change, all participants must follow the project’s
change control process. This ensures that requested changes are not lost, the impact of each
requested change is evaluated, and all proposed changes are considered in a consistent way. As a
result, you can make good business decisions to incorporate certain changes into the product.

Responsibility #10: To respect the requirements engineering processes the
developers use. Gathering requirements and verifying their accuracy are among the greatest
challenges in software development. Although you might become frustrated with the process, it’s
an excellent investment that will be less painful if you understand and respect the techniques
analysts use for gathering, documenting, and assuring the quality of the software requirements.
Customers should be educated about the requirements process, ideally attending classes together
with developers. I’ve often presented seminars to audiences that included developers, users,
managers, and requirements specialists. People can collaborate more effectively when they learn
together.

What About Sign-Off?

Agreeing on a new product’s requirements is a critical part of the customer-developer
partnership. Many organizations use the act of signing off on the requirements document to
indicate customer approval. All participants in the requirements approval process need to know
exactly what sign-off means.

One potential problem is the customer representative who regards signing off on the
requirements as a meaningless ritual: “I was given a piece of paper that had my name printed
beneath a line, so I signed on the line because otherwise the developers wouldn’t start coding.”
This attitude can lead to future conflicts when that customer wants to change the requirements or
when he’s surprised by what is delivered: “Sure, I signed off on the requirements, but I didn’t
have time to read them all. I trusted you guys—you let me down!”

Equally problematic is the development manager who views sign-off as a way to freeze the
requirements. Whenever a change request is presented, he can point to the SRS and protest, “You
signed off on these requirements, so that’s what we’re building. If you wanted something else,
you should have said so.”

Both of these attitudes fail to acknowledge the reality that it’s impossible to know all the
requirements early in the project and that requirements will undoubtedly change over time.
Requirements sign-off is an appropriate action that brings closure to the requirements
development process. However, the participants have to agree on precisely what they’re saying
with their signatures.

More important than the sign-off ritual is the concept of establishing a “baseline” of the
requirements agreement—a snapshot at some point in time. The subtext of a signature on an SRS
sign-off page should therefore read something like: “I agree that this document represents our
best understanding of the requirements for the project today. Future changes to this baseline can
be made through the project’s defined change process. I realize that approved changes might
require us to renegotiate the project’s costs, resources, and schedule commitments.”

A shared understanding of the requirements approval process should alleviate the friction
that can arise as the project progresses and requirements oversights are revealed, or as
marketplace and business demands evolve. Sealing the initial requirements development activities
with such an explicit agreement helps you forge a continuing customer-developer partnership on
the way to project success.

